修回日期: 2004-02-19
接受日期: 2004-02-24
在线出版日期: 2004-06-15
大肠癌(colorectal cancer, CRC )是威胁人类生存的恶性肿瘤之一. 由于大肠癌比较适于基因治疗, 因此他是目前大肠癌研究的热点问题之一. 基因治疗主要包括自杀基因治疗, 与原癌基因和抑癌基因有关的基因治疗, 免疫基因治疗和联合治疗等. 有些研究已经进入临床试验阶段. 本文介绍了大肠癌的基因治疗研究进展和存在的问题, 为今后的医疗科研工作提供新的思路.
引文著录: 谭颖, 姚宇亮, 林连捷, 郑长青. 大肠癌的基因治疗. 世界华人消化杂志 2004; 12(6): 1451-1454
Revised: February 19, 2004
Accepted: February 24, 2004
Published online: June 15, 2004
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12(6): 1451-1454
- URL: https://www.wjgnet.com/1009-3079/full/v12/i6/1451.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i6.1451
大肠癌是威胁人类生存的恶性肿瘤之一. 在西方国家恶性肿瘤的发病率中居第二位, 在我国居第四位. 目前的治疗以外科手术为主, 辅以放疗和细胞毒性药物, 但仍有50%的患者死于复发和转移, 尤其是肝脏转移极易发生. 由于大肠癌的一些特性使其比较适于基因治疗, 临床前研究试验已获得的一些资料, 证实了其安全性, 并且有些基因治疗方案已应用于临床[1], 本文将就大肠癌的基因治疗研究进展作简要综述.
自杀基因治疗又名基因介导的酶前药物治疗(gene directed enzyme prodrug therapy, GDEPT), 是一种通过目的基因的转导, 将外源酶转入肿瘤细胞中, 使无毒的前药在肿瘤中代谢为有细胞毒性的药物, 从而杀死肿瘤细胞[2-6]. 这种基因转导主要以病毒为载体(virus-directed enzyme prodrug therapy, VDEPT). 这种治疗的优点在于能够使毒性效应局限于肿瘤细胞而不累及正常细胞, 如骨髓和胃肠道细胞. 但是通过基因转导的途径不能将所有肿瘤细胞均转染上自杀基因, 而旁观者效应(bystander effect, BE)可在很大程度上弥补这一不足. BE作用机制主要是毒性代谢产物(或其他来自已死亡的肿瘤细胞的凋亡因子)通过缝隙连接与细胞接触被动扩散到未转染的肿瘤细胞中; 也可以通过免疫反应起作用[7-9]. 目前研究较多的是单纯疱疹病毒胸苷激酶基因/更昔洛韦(herpes simplex thymidine kinase/ganciclovir, HSV-TK/GCV), 大肠杆菌胞嘧啶脱氨酶基因/5-氟胞嘧啶(cytosine deaminase/5-fluorocytosine, CD/5-FC)和硝基还原酶/CB1954(nitroreductase/CB1954)治疗方法.
1.1.1 HSV-TK/GCV: HSV-TK能够催化GCV的磷酸化, 产生毒性代谢药物丙氧鸟苷三磷酸(GCV-triphosphate, GCVTP), 从而抑制肿瘤细胞DNA的合成. 其催化效应是人核酸激酶(human nucleoside kinase)的1 000倍, 这使其成为GDEPT的典型实例. 利用HSV-TK/GCV系统治疗大肠癌细胞株HT-290, 肿瘤细胞衰退达80%以上[10]. 在转导了HSV-TK基因的结肠癌细胞系HCT-116中观察到GCV不仅对转导TK基因(TK+)的肿瘤细胞有杀伤作用, 对于未转导TK基因(TK-)的肿瘤细胞也具有杀伤作用[11] . 在大肠腺癌的同源鼠模型(Syngeneic murine model)上, HSV-TK/GCV系统可以在只有9%细胞表达TK基因的基础上使CT-26肿瘤细胞完全衰退. 由于脂溶性GCV代谢产物不能扩散入相邻的细胞, 因此可能依靠旁观者效应中的缝隙连接或免疫反应发挥作用[12]. 动物实验表明, 用表达HSV-TK逆转录病毒包装细胞和结肠癌细胞接种M26小鼠, 并且用GCV腹腔注射, 结果发现有免疫力的小鼠的肿瘤明显消退, 而在免疫抑制的无胸腺小鼠中却未发现旁观者效应, 证实了在旁观者效应中免疫因素的抗肿瘤的作用[13].动物实验表明[14], HU和HSV-TK/GCV联合应用将会加强对肿瘤DNA合成的抑制, 减慢肿瘤的生长速度. 癌胚抗原(carcinoembryonic antigen , CEA)在80%以上的大肠癌中均有表达. 实验结果表明[15]利用CEA基因启动子连接HSV-TK基因, HSV-TK基因可特异性进入分泌CEA的人类大肠癌细胞株; 将其导入CB17 SCID鼠的大肠癌肝转移模型中可发现肝转移肿瘤细胞的衰退. HSV-TK/GCV系统已进入I期临床试验阶段. 在局麻条件下, 超声监测下, 对16例大肠癌肝转移患者经皮下肿瘤内注射表达HSV-TK基因的复制缺陷腺病毒载体(Adv. RSV-tk), 经过5次逐步增量, 剂量达到1×1013病毒颗粒, 同时静脉内注射GCV(定量).结果显示肝毒性低, 只有3例患者有一过性血浆转氨酶升高, 其他毒性也都是一过性的: 5例患者出现发热, 1例患者有血小板减少, 3例患者有白细胞减少. 试验结果[16]证明了肿瘤内注射Adv. RSV-tk是安全的, 为将来的临床治疗提供了依据.
1.1.2 CD/5-FC: CD基因存在于某些细菌和真菌体内, 哺乳动物细胞内无此基因, 可将毒性极低的抗真菌药物5-氟胞嘧啶(5-FC)代谢成为治疗大肠癌最有效的化疗药物之一-5-氟尿嘧啶(5-FU). 5-FU可抑制DNA合成, 阻断核酸代谢途径, 从而杀死肿瘤细胞. 有研究表明[17], 利用酵母中提取的胞嘧啶脱氨酶(yestcytosinedeaminase, yCD)将5-FC转变为5-FU的能力比从细菌中提取的胞嘧啶脱氨酶(bacterialcytosinedeminase, bCD)强20倍以上, 从而说明真菌的CD基因疗效强于细菌的CD基因. CD/5-FC系统的局限性在于5-FU的细胞毒性存在细胞周期依赖性. 在仅有2%异体移植细胞表达CD基因时, 肿瘤细胞明显消退, 提示CD/5-FC系统存在显著的体内旁观者效应[18]. 利用重组腺病毒载体转染CD基因进入BALB-C小鼠和MC38肝转移模型小鼠, 结果发现在肿瘤细胞中目的基因的表达水平比其他器官中的表达水平高1 000-10 000倍(n = 160, P<0.0001), 给予前药5-FC以后, 大肠癌肝转移小鼠的治愈率达30%以上[19]. CD 与UPRT(uracil phosphoribosyl transferase)联合应用将会加速5-FU转化成为其毒性代谢产物, 加强抗肿瘤疗效[20]. 利用具有免疫能力和缺乏免疫能力(无胸腺)小鼠研究CD/5-FC系统对大肠癌肝转移的治疗作用, 实验显示转染CD基因的肿瘤细胞对5-FC的敏感性比未转染的亲代细胞高120倍以上, 不到5%的肿瘤细胞转染CD基因并给予5-FC治疗后可使肿瘤细胞显著减少甚至完全消退, 并可在肿瘤局部见到大量CD4+、CD8+淋巴细胞和巨噬细胞浸润, 这些小鼠对其他的肿瘤的抵抗力也明显增强, 而在无胸腺小鼠接种按40:60比例配制的CD阳性和CD阴性肿瘤细胞, 尽管给予5-FC治疗, 但最终几乎所有的裸鼠均感染上肿瘤, 提示免疫因素在基因治疗中的抗肿瘤作用[9]. 利用CEA基因启动子连接CD基因, 使CD基因只能在分泌CEA的靶细胞中表达. Cao et al[21-22]利用逆转录病毒为载体, 分别将CEA基因调控的CD基因和单独的CD基因pCD2转移到接种大肠癌细胞的小鼠体内, 结果显示使用pCD2基因注射的小鼠在大肠癌细胞和骨髓细胞内均有CD基因的表达, 在给予5-FC治疗后, 出现骨髓抑制现象; 而接种CEA419/CD基因的小鼠, 仅仅在大肠癌细胞中有CD基因表达, 经5-FC治疗后, 大肠癌细胞完全消退, 且不出现骨髓抑制现象. 试验结果表明应用肿瘤选择性启动子进行体内基因治疗可以确保自杀基因治疗的安全性. CD/5-FC系统已进入I期临床试验阶段. 利用逆转录病毒为载体, 对大肠癌肝转移患者进行肿瘤内注射大肠杆菌CD基因(Ad-GVCD-10), 同时口服5-FC. 剂量上限预计为2×109病毒颗粒. 该试验分为两组: 其中一组只给予载体和前药, 另一组在治疗后切除肿瘤进行组织学和分子学研究[23].
1.1.3 硝基还原酶/CB1954: 硝基还原酶能够使前药CB1954转化为具有高度毒性的两种不同功能的烷基化物,能导致细胞死亡. 这种效应具有非细胞周期依赖性, 并存在旁观者效应[24]. 临床I期CB1954的剂量试验已完成, 设置了其静脉注射的安全剂量. 药代动力学通过对临床前模型的研究表明, 充足的剂量对于CB1954的激活有重要临床意义. 在这项进行中的I期临床试验中, 以E1, E3敲除的腺病毒为载体, 将巨细胞病毒启动子调控的硝基还原酶基因对大肠癌肝转移的患者进行超声监控下肿瘤内注射. 通过用重组腺病毒转染大肠癌肝转移患者, 初步数据表明肿瘤内注射的安全剂量可达到1×1010病毒微粒. 免疫组化分析表明硝基还原酶的表达与剂量有关.
大量实验证明大肠癌的发生与多个癌基因的激活或抑癌基因的失活有关, 如原癌基因K-ras, myc, 抑癌基因p53, apc, mcc, dcc, p16等. 大肠癌相关的癌变异基因校正治疗的关键于在肿瘤内要存在某种基因的高表达. 该治疗目前主要是敲除或校正致病基因和导入正常的抑癌基因. 50%大肠癌患者有p53变异. 动物试验表明[25]在p53变异的大肠癌鼠模型上重新表达野生型p53可以抑制肿瘤生长提高存活率. 临床I期试验[26]证实了经肝动脉或肿瘤内转导腺病毒为载体的p53的安全性和剂量. 对原癌基因的过度表达, 可用反义寡核苷酸或核糖酶抑制原癌基因的过度表达. 临床前研究[27]表明K-ras 反义疗法是一种安全, 相对无毒的治疗方法. Survivin是新近发现的一种抑制细胞凋亡蛋白(inhibitor of apoptosis protein, IAP)家族成员, 特异性表达于人和鼠的胚胎发育组织以及多数人类肿瘤细胞[28]. Survivin在结、直肠癌患者总体表达率约为53. 2%-63. 5%. 体外试验[29]表明, 腺病毒介导的survivin途径能够诱导肿瘤细胞凋亡, 同时不影响周围正常细胞的增生. 其效果优于同等条件下使用阿霉素的结果.
免疫基因治疗的目的在于激活细胞介导或是抗体依赖的肿瘤特异性免疫反应. 针对肿瘤细胞繁殖导致的免疫下调和肿瘤抗原的复杂性[30-31], 大肠癌的免疫基因治疗主要是输入细胞因子基因及输入肿瘤相关抗原基因重组的病毒基因. 临床前试验[32-34]已证明包括IL-2, IL-4, IL-12, CM-CSF, IFN-γ在内的一系列细胞因子的免疫增强作用. I期临床试验[35-36]证实, 利用痘病毒为载体的CEA肿瘤内注射3 mo, 9例患者中有7例被激发CEA特异性细胞毒性淋巴细胞反应.
上述基因疗法虽然对大肠癌有一定疗效, 但还不能彻底清除体内瘤细胞. 联合治疗是目前基因治疗的发展方向. 应用于大肠癌的联合基因治疗主要有: 自杀基因与细胞因子基因的联合应用, 自杀基因与放疗的联合应用等. 动物试验[37-38]已表明自杀基因与细胞因子基因的联合应用可避免肿瘤的复发, 延长动物的成活时间. 目前有学者[39-40]已证实自杀基因治疗肿瘤可增加肿瘤细胞对放疗的敏感性. 在小鼠结肠癌肝转移的动物模型上, 通过重组腺病毒载体分别转导ADV/RSV-MIL-2基因和ADV/RSV-tk基因, 然后给予GCV治疗. 结果表明分别应用IL-2基因, tk基因和二者联合治疗的肿瘤面积分别为120 mm2, 25 mm2和5 mm2, 并发现抗肿瘤效果的提高与IL-2介导的T细胞免疫增强有关[37]. 在此基础上, 应用HSV-TK基因、IL-2基因和GM-CSF基因联合治疗结肠癌肝转移的荷瘤小鼠, 结果显示联合自杀基因和两种细胞因子基因治疗优于tk基因与IL-2基因的联合治疗[38]. 证实了肿瘤细胞内GM-CSF的局部表达及IL-2 基因的延长表达可以产生持续的抗肿瘤免疫效应, 从而避免了肿瘤的复发, 延长动物的成活时间. 利用逆转录病毒为载体转染IFN-α基因进入大肠癌细胞COLO 201, 并与5-FU联合治疗. 结果表明可以提高肿瘤细胞的死亡率, 诱发肿瘤细胞凋亡[41]. 有研究[42]表明, 腺病毒介导的UPRT (uracil phos-phoribosyltransferase)基因转染、5-FU 与放射治疗联合作用于大范围的裸鼠皮下HT29肿瘤取得了良好的疗效. 已有研究在动物实验中证明自杀基因和放疗联合应用有效地治疗结肠癌. 将接种Widr细胞的裸鼠分为4组, 分别用放射治疗, 自杀基因(CD基因) 治疗, 自杀基因和放疗联合应用, 5-FU化疗和放疗联合. 结果表明, 自杀基因(CD基因)和放射联合治疗的小鼠肿瘤消退最快, 并且肿瘤细胞对放疗的敏感性增加[43].
自1990年美国对ADA缺乏病患者首次应用基因治疗以来, 以欧美为中心开展了各种基因治疗的临床试验, 目前美国食品医药管理局(FDA)所批准实施的基因治疗方案已经超过600种, 60%应用于癌症的治疗. 3 500例患者接受了基因治疗, 其中2 400例是癌症患者. 大肠癌的基因治疗已经从理论走向了实践, 其有效性已在细胞学和动物模型上得到验证, HSV-TK/GCV, CD/5-FC体系的VDEPT方案, p53抑癌基因治疗以及某些免疫基因已进入I期临床试验阶段. 这些试验将验证基因治疗的有效性和安全性, 并探讨其使用的剂量、途径和疗程等实际问题. 但大肠癌基因治疗的临床应用仍存在很多问题, 如基因转导的低效性, 抗肿瘤效应的低效性, 基因表达的安全性, 基因转导的靶向性, 自体免疫反应, 基因载体的安全性, 非损伤性基因表达监控等. 随着这些问题的解决, 大肠癌的基因治疗必将愈加完善, 成为人类医治大肠癌的重要手段.
1. | Kerr D. Clinical development of gene therapy for colorectal cancer. Nat Rev Cancer. 2003;3:615-622. [PubMed] [DOI] |
2. | Denny WA, Wilson WR. The design of selectively-activated anti-cancer prodrugs for use in antibody-directed and gene-directed enzyme-prodrug therapies. J Pharm Pharmacol. 1998;50:387-394. [PubMed] [DOI] |
3. | Friedlos F, Court S, Ford M, Denny WA, Springer C. Gene-directed enzyme prodrug therapy: quantitative bystander cytotoxicity and DNA damage induced by CB1954 in cells expressing bacterial nitroreductase. Gene Ther. 1998;5:105-112. [PubMed] [DOI] |
4. | Friedlos F, Denny WA, Palmer BD, Springer CJ. Mustard prodrugs for activation by Escherichia coli nitroreductase in gene-directed enzyme prodrug therapy. J Med Chem. 1997;40:1270-1275. [PubMed] [DOI] |
5. | Clark AJ, Iwobi M, Cui W, Crompton M, Harold G, Hobbs S, Kamalati T, Knox R, Neil C, Yull F. Selective cell ablation in transgenic mice expression E. coli nitroreductase. Gene Ther. 1997;4:101-110. [PubMed] [DOI] |
6. | Moolten FL. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 1986;46:5276-5281. [PubMed] |
7. | Bi WL, Parysek LM, Warnick R, Stambrook PJ. In vitro evidence that metabolic cooperation is responsible for the bystander effect observed with HSV tk retroviral gene therapy. Hum Gene Ther. 1993;4:725-731. [PubMed] [DOI] |
8. | McMasters RA, Saylors RL, Jones KE, Hendrix ME, Moyer MP, Drake RR. Lack of bystander killing in herpes simplex virus thymidine kinase-transduced colon cell lines due to deficient connexin43 gap junction formation. Hum Gene Ther. 1998;9:2253-2261. [PubMed] [DOI] |
9. | Kuriyama S, Kikukawa M, Masui K, Okuda H, Nakatani T, Sakamoto T, Yoshiji H, Fukui H, Ikenaka K, Mullen CA. Cytosine deaminase/5-fluorocytosine gene therapy can induce efficient anti-tumor effects and protective immunity in immunocompetent mice but not in athymic nude mice. Int J Cancer. 1999;81:592-597. [PubMed] [DOI] |
10. | Barnes LD, Garrison PN, Siprashvili Z, Guranowski A, Robinson AK, Ingram SW, Croce CM, Ohta M, Huebner K. Fhit, a putative tumor suppressor in humans, is a dinucleoside 5',5"'-P1,P3-triphosphate hydrolase. Biochemistry. 1996;35:11529-11535. [PubMed] [DOI] |
11. | Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN. The "bystander effect": tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res. 1993;53:5274-5283. [PubMed] |
12. | Link CJ Jr, Levy JP, McCann LZ, Moorman DW. Gene therapy for colon cancer with the herpes simplex thymidine kinase gene. J Surg Oncol. 1997;64:289-294. [PubMed] [DOI] |
13. | Gagandeep S, Brew R, Green B, Christmas SE, Klatzmann D, Poston GJ, Kinsella AR. Prodrug-activated gene therapy: involvement of an immunological component in the "bystander effect". Cancer Gene Ther. 1996;3:83-88. [PubMed] |
14. | Boucher PD, Ostruszka LJ, Murphy PJ, Shewach DS. Hydroxyurea significantly enhances tumor growth delay in vivo with herpes simplex virus thymidine kinase/ganciclovir gene therapy. Gene Ther. 2002;9:1023-1030. [PubMed] [DOI] |
15. | Okabe S, Arai T, Yamashita H, Sugihara K. Adenovirus-mediated prodrug-enzyme therapy for CEA-producing colorectal cancer cells. J Cancer Res Clin Oncol. 2003;129:367-373. [PubMed] [DOI] |
16. | Sung MW, Yeh HC, Thung SN, Schwartz ME, Mandeli JP, Chen SH, Woo SL. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol Ther. 2001;4:182-191. [PubMed] [DOI] |
17. | Kievit E, Bershad E, Ng E, Sethna P, Dev I, Lawrence TS, Rehemtulla A. Superiority of yeast over bacterial cytosine deaminase for enzyme/prodrug gene therapy in colon cancer xenografts. Cancer Res. 1999;59:1417-1421. [PubMed] |
18. | Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA. 1994;91:8302-8306. [PubMed] [DOI] |
19. | Block A, Freund CT, Chen SH, Nguyen KP, Finegold M, Windler E, Woo SL. Gene therapy of metastatic colon carcinoma: regression of multiple hepatic metastases by adenoviral expression of bacterial cytosine deaminase. Cancer Gene Ther. 2000;7:438-445. [PubMed] [DOI] |
20. | Chung-Faye GA, Chen MJ, Green NK, Burton A, Anderson D, Mautner V, Searle PF, Kerr DJ. In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Ther. 2001;8:1547-1554. [PubMed] [DOI] |
21. | Cao G, Kuriyama S, Gao J, Mitoro A, Cui L, Nagao S, Zhang X, Tsujinoue H, Pan X, Fukui H. In vivo gene transfer of a suicide gene under the transcriptional control of the carcinoembryonic antigen promoter results in bone marrow transduction but can avoid bone marrow suppression. Int J Oncol. 1999;15:107-112. [PubMed] [DOI] |
22. | Cao G, Kuriyama S, Gao J, Kikukawa M, Cui L, Nakatani T, Zhang X, Tsujinoue H, Pan X, Fukui H. Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther. 1999;6:83-90. [PubMed] [DOI] |
23. | Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C, Yankelevitz D, Kemeny N, Silverstein R, Ohwada A. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther. 1997;8:985-1001. [PubMed] [DOI] |
24. | Green NK, Youngs DJ, Neoptolemos JP, Friedlos F, Knox RJ, Springer CJ, Anlezark GM, Michael NP, Melton RG, Ford MJ. Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther. 1997;4:229-238. [PubMed] |
25. | Harris MP, Sutjipto S, Wills KN, Hancock W, Cornell D, Johnson DE, Gregory RJ, Shepard HM, Maneval DC. Adenovirus-mediated p53 gene transfer inhibits growth of human tumor cells expressing mutant p53 protein. Cancer Gene Ther. 1996;3:121-130. [PubMed] |
26. | Cohen AM, Kemeny NE, Kohne CH, Wils J, de Takats PG, Kerr DJ. Is intra-arterial chemotherapy worthwhile in the treatment of patients with unresectable hepatic colorectal cancer metastases? Eur J Cancer. 1996;32A:2195-2205. [PubMed] [DOI] |
27. | Sakakura C, Hagiwara A, Tsujimoto H, Ozaki K, Sakakibara T, Oyama T, Ogaki M, Imanishi T, Yamazaki J, Takahashi T. Inhibition of colon cancer cell proliferation by antisense oligonucleotides targeting the messenger RNA of the Ki-ras gene. Anticancer Drugs. 1995;6:553-561. [PubMed] [DOI] |
28. | Adida C, Crotty PL, McGrath J, Berrebi D, Diebold J, Altieri DC. Developmentally regulated expression of the novel cancer anti-apoptosis gene survivin in human and mouse differentiation. Am J Pathol. 1998;152:43-49. [PubMed] |
29. | Mesri M, Wall NR, Li J, Kim RW, Altieri DC. Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest. 2001;108:981-990. [PubMed] [DOI] |
30. | Todryk SM, Chong H, Vile RG, Pandha H, Lemoine NR. Can immunotherapy by gene transfer tip the balance against colorectal cancer? Gut. 1998;43:445-449. [PubMed] [DOI] |
31. | Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res. 2000;20:2665-2676. [PubMed] |
32. | Sobol RE, Shawler DL, Carson C, Van Beveren C, Mercola D, Fakhrai H, Garrett MA, Barone R, Goldfarb P, Bartholomew RM. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study. Clin Cancer Res. 1999;5:2359-2365. [PubMed] |
33. | Suminami Y, Elder EM, Lotze MT, Whiteside TL. In situ interleukin-4 gene expression in cancer patients treated with genetically modified tumor vaccine. J Immunother Emphasis Tumor Immunol. 1995;17:238-248. [PubMed] [DOI] |
34. | Schmidt-Wolf IG, Finke S, Trojaneck B, Denkena A, Lefterova P, Schwella N, Heuft HG, Prange G, Korte M, Takeya M. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer. 1999;81:1009-1016. [PubMed] [DOI] |
35. | Marshall JL, Hawkins MJ, Tsang KY, Richmond E, Pedicano JE, Zhu MZ, Schlom J. Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol. 1999;17:332-337. [PubMed] [DOI] |
36. | Zhu MZ, Marshall J, Cole D, Schlom J, Tsang KY. Specific cytolytic T-cell responses to human CEA from patients immunized with recombinant avipox-CEA vaccine. Clin Cancer Res. 2000;6:24-33. [PubMed] |
37. | Chen SH, Chen XH, Wang Y, Kosai K, Finegold MJ, Rich SS, Woo SL. Combination gene therapy for liver metastasis of colon carcinoma in vivo. Proc Natl Acad Sci USA. 1995;92:2577-2581. [PubMed] [DOI] |
38. | Chen SH, Kosai K, Xu B, Pham-Nguyen K, Contant C, Finegold MJ, Woo SL. Combination suicide and cytokine gene therapy for hepatic metastases of colon carcinoma: sustained antitumor immunity prolongs animal survival. Cancer Res. 1996;56:3758-3762. [PubMed] |
39. | Kim SH, Kim JH, Kolozsvary A, Brown SL, Freytag SO. Preferential radiosensitization of 9L glioma cells transduced with HSV-tk gene by acyclovir. J Neurooncol. 1997;33:189-194. [PubMed] [DOI] |
40. | Nishihara E, Nagayama Y, Mawatari F, Tanaka K, Namba H, Niwa M, Yamashita S. Retrovirus-mediated herpes simplex virus thymidine kinase gene transduction renders human thyroid carcinoma cell lines sensitive to ganciclovir and radiation in vitro and in vivo. Endocrinology. 1997;138:4577-4583. [PubMed] [DOI] |
41. | Sabaawy HE, Farley T, Ahmed T, Feldman E, Abraham NG. Synergetic effects of retrovirus IFN-αlpha gene transfer and 5-FU on apoptosis of colon cancer cells. Acta Haematol. 1999;101:82-88. [PubMed] [DOI] |
42. | Koyama F, Fujii H, Mukogawa T, Ueno M, Hamada H, Ishikawa H, Doi S, Nakao T, Matsumoto H, Shimatani H. Chemo-radio-gene therapy for colorectal cancer cells using Escherichia coli uracil phosphoribosyltransferase gene. Anticancer Res. 2003;23:1343-1348. [PubMed] |
43. | Gabel M, Kim JH, Kolozsvary A, Khil M, Freytag S. Selective in vivo radiosensitization by 5-fluorocytosine of human colorectal carcinoma cells transduced with the E. coli cytosine deaminase (CD) gene. Int J Radiat Oncol Biol Phys. 1998;41:883-887. [PubMed] [DOI] |