修回日期: 2004-01-09
接受日期: 2004-02-01
在线出版日期: 2004-05-15
目的: 探讨Smad4在结肠癌发生、发展过程中的作用.
方法: 采用免疫组化S-P法检测70例正常结肠黏膜组织和结肠肿瘤组织中Smad4的表达.
结果: 结肠癌(n = 52)中Smad4的表达水平明显低于正常结肠黏膜(n = 7), 并与肿瘤分期、分化程度及转移有关(P<0.05).
结论: Smad4的低表达可能与结肠癌的发生、发展过程有关, 并可能在结肠癌浸润和转移中发挥作用.
引文著录: 肖德胜, 李景和, 傅春燕, 文继舫. 结肠癌组织Smad4蛋白表达的意义. 世界华人消化杂志 2004; 12(5): 1065-1068
Revised: January 9, 2004
Accepted: February 1, 2004
Published online: May 15, 2004
AIM: To investigate the role of Smad4 protein in colorectal carcinogenesis.
METHODS: Expression of Smad4 was detected in 70 cases of normal tissues and colorectal tumor by a streptavidin-peroxidase conjugation method (S-P).
RESULTS: Smad4 expression was significantly lower in colorectal carcinoma (n = 52) than that in the normal tissues (n = 7) and was related to the tumor stages, differentiation and metastasis (lymph node or blood) (P < 0.05).
CONCLUSION: Down-regulation of Smad4 expression may be associated with the carcinogenesis, and Smad4 may play a role in invasion and metastasis of colorectal carcinoma.
- Citation: Xiao DS, Li JH, Fu CY, Wen JF. Expression and significance of Smad4 in colorectal carcinoma tissue. Shijie Huaren Xiaohua Zazhi 2004; 12(5): 1065-1068
- URL: https://www.wjgnet.com/1009-3079/full/v12/i5/1065.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i5.1065
转化生长因子b(transforming growth factor-b, TGF-b)超家族在机体的免疫调节、细胞生长和分化、细胞外基质的合成和储存、胚胎发育、创伤修复等方面发挥着十分重要的作用[1-5]. TGF-b是机体上皮细胞生长、增生和分化强有力的抑制因子, 但是上皮源性的恶性肿瘤细胞丧失了对TGF-b的反应性而逃避TGF-b的生长抑制作用, 结果导致肿瘤发生[6-8]. Smad4是TGF-b信号转导途径的中心分子, 几乎所有生物学效应均是Smad4与不同的Smads蛋白相互作用的结果[9-12]. Smad4是DPC4的基因产物. 最近有文献报道, 伴远处转移的浸润癌和远处转移病灶其DPC4突变频率明显高于腺瘤和黏膜内癌, 且有显著性差异(P = 0.006-0.001), 说明DPC4的突变与结肠癌的恶性进展, 如远处转移有关. 另有文献报道Smad4蛋白表达异常可能有利于结肠癌的浸润和转移[13-16]. 我们用免疫组织化学S-P法检测Smad4蛋白的表达情况, 旨在探讨Smad4在结肠癌癌变机制中可能的作用, 并阐明Smad4与结肠癌浸润和转移的关系如下.
我校1996/2001年结肠肿瘤及正常结肠黏膜存档蜡块共70例, 每例皆有完整病历和病理资料, 并经病理诊断核实. 所有标本经40 g/L甲醛固定, 石蜡包埋, 5 mm连续切片. 正常结肠黏膜7例, 腺瘤11例, 高分化腺癌13例, 低分化腺癌25例, 癌转移(经淋巴道及血道)14例; DukesA、B期38例, C、D期14例; 男45例, 女25例; 小于60岁39例, 大于或等于60岁31例. 鼠抗人Smad4单克隆抗体为neomarkers公司产品, 使用稀释度1: 50; S-P试剂盒及DAB显色试剂盒由北京中山公司提供.
Smad4蛋白阳性信号定位于细胞质及胞核. 在正常结肠黏膜和结肠腺瘤中, Smad4呈强阳性表达, 阳性细胞分布在黏膜全层中(图1, 2). 在结肠癌组织中, Smad4蛋白表达下降, 其分布及着色程度呈异质性, 其中高分化腺癌尚有部分表达(图3), 低分化腺癌及转移癌表达明显下降, 有的甚至无表达(图4-6).
Smad4蛋白在结肠肿瘤中的表达与肿瘤分期、分化程度及转移有关(表1). Smad4蛋白在正常结肠黏膜和腺瘤中全部表达, 且呈强阳性表达, 而在高分化腺癌、低分化腺癌及转移癌中均有较明显下降, 有的甚至不表达. 正常结肠黏膜与腺瘤比较, Smad4蛋白表达无显著性差异(P>0.05); 与正常结肠黏膜比较, 在高分化腺癌、低分化腺癌及转移癌中Smad4蛋白表达均有显著性差异(P<0.05). 与低分化腺癌比较, 高分化腺癌Smad4蛋白表达较强, 有显著性差异(P<0.05); 与A, B期结肠癌比较, C, D期结肠癌Smad4蛋白表达弱, 有显著性差异(P<0.05); Smad4蛋白表达与结肠癌患者的性别、年龄均无统计学意义(P>0.05).
TGF-b信号转导途径的失控可能会丧失对细胞的生长抑制而导致肿瘤的发生[19]. DPC4的失活被认为是引起生长抑制丧失的一个重要原因, 可概括为: (1)染色体片段的丢失, 包括杂合型缺失或纯合型缺失; (2)基因突变, 如移码突变、无义突变、错义突变等; (3)基因表达水平异常, 即表达水平低下或缺乏[20]. DPC4被认为是一种肿瘤抑制基因[21-25], 大约50%的胰腺癌,30%的结肠癌其DPC4发生了突变[26-28]. DPC4功能的失活能够导致肿瘤的发生, 在DPC4功能缺陷的肿瘤细胞株中通过DPC4表达的重建, 使之重新获得了抑制肿瘤形成的能力. 目前不少学者认为DPC4的失活发生在肿瘤进展的后期, 属于晚期分子事件, 并与肿瘤的浸润和转移密切相关[29-33]. DPC4作为候选的肿瘤抑制基因, 对其功能的研究存在二个问题[34]: (1)DPC4基因的蛋白产物Smad4在结肠癌中的表达情况, 国内外尚未见文献报道; (2) Smad4蛋白的表达情况与结肠癌临床生物学行为的关系研究在国内外亦未见相关的文献报道.
我们研究结果表明, Smad4在正常结肠黏膜中均有强的表达, 而在高分化腺癌、低分化腺癌及转移癌(淋巴道或血道)中表达均明显下降, 有的甚至无表达, 其差异均有显著性. 低分化腺癌与高分化腺癌比较, Smad4蛋白表达有明显下降(P<0.05); C, D期结肠癌与A, B期结肠癌比较, Smad4蛋白的表达亦有明显下降(P<0.05); 表明Smad4蛋白在结肠肿瘤中的表达情况与肿瘤分期、分化程度及转移有关. Smad4蛋白表达水平下降或缺乏削弱了TGF-b信号转导途径, 减弱或丧失了对细胞的生长抑制作用, 从而导致肿瘤的发生. Smad4蛋白表达水平的下降或缺乏可能是由染色体片段丢失(杂合型缺失或纯合型缺失)或基因突变(移码突变、无义突变、错义突变等)引起的. DPC4的失活可能发生在肿瘤进展的后期, 属于晚期分子事件, 并参与肿瘤的浸润和转移. 此外, Smad4蛋白的表达与结肠癌患者的性别、年龄均无统计学意义(P>0.05); 正常结肠黏膜与腺瘤比较, Smad4蛋白的表达差异不明显(P>0.05). 表明Smad4可能具有抑制结肠癌细胞生长及抑制结肠癌浸润和转移的作用, 提示Smad4可能参与了结肠癌的演进过程, 有利于加深我们对结肠癌癌变机制的理解.
一般认为, 结肠癌的发生是一个长期的多因素形成的分阶段的过程. 从结肠黏膜上皮过度增生→不典型增生→结肠癌的演进过程中, 关键的步骤是癌基因的突变和抑癌基因的失活, 本结果表明DPC4的失活可能与结肠癌的发生和转移有关, 但DPC4失活绝不是导致结肠癌发生的惟一因素, 必定还有许多其他基因或因素的参与, 那么这些基因或因素是什么, 他们之间是如何相互作用的, 这些问题有待进一步的研究.
1. | Wei HS, Li DG, Lu HM, Zhan YT, Wang ZR, Huang X, Zhang J, Cheng JL, Xu QF. Effects of AT1 receptor antagonist, losartan, on rat hepatic fibrosis induced by CCl(4). World J Gastroenterol. 2000;6:540-545. [PubMed] [DOI] |
2. | Huang GC, Zhang JS, Zhang YE. Effects of retinoic acid on proliferation, phenotype and expression of cyclin-dependent kinase inhibitors in TGF-beta1-stimulated rat hepatic stellate cells. World J Gastroenterol. 2000;6:819-823. [PubMed] [DOI] |
3. | Huang X, Li DG, Wang ZR, Wei HS, Cheng JL, Zhan YT, Zhou X, Xu QF, Li X, Lu HM. Expression changes of activin A in the development of hepatic fibrosis. World J Gastroenterol. 2001;7:37-41. [PubMed] [DOI] |
4. | Fang DC, Yang SM, Zhou XD, Wang DX, Luo YH. Telomere erosion is independent of microsatellite instability but related to loss of heterozygosity in gastric cancer. World J Gastroenterol. 2001;7:522-526. [PubMed] [DOI] |
5. | Xiong B, Gong LL, Zhang F, Hu MB, Yuan HY. TGF beta1 expression and angiogenesis in colorectal cancer tissue. World J Gastroenterol. 2002;8:496-498. [PubMed] [DOI] |
6. | Yang X, Li C, Herrera PL, Deng CX. Generation of Smad4/Dpc4 conditional knockout mice. Genesis. 2002;32:80-81. [PubMed] [DOI] |
7. | Miyaki M, Kuroki T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun. 2003;306:799-804. [PubMed] [DOI] |
8. | Cattaneo M, Orlandini S, Beghelli S, Moore PS, Sorio C, Bonora A, Bassi C, Talamini G, Zamboni G, Orlandi R. SEL1L expression in pancreatic adenocarcinoma parallels SMAD4 expression and delays tumor growth in vitro and in vivo. Oncogene. 2003;22:6359-6368. [PubMed] [DOI] |
9. | Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet. 2002;3:101-128. [PubMed] [DOI] |
10. | Schwarte-Waldhoff I, Schmiegel W. Smad4 transcriptional pathways and angiogenesis. Int J Gastrointest Cancer. 2002;31:47-59. [PubMed] [DOI] |
11. | Lin X, Liang M, Liang YY, Brunicardi FC, Melchior F, Feng XH. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J Biol Chem. 2003;278:18714-18719. [PubMed] [DOI] |
12. | Lin X, Liang M, Liang YY, Brunicardi FC, Feng XH. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J Biol Chem. 2003;278:31043-31048. [PubMed] [DOI] |
13. | Yamaguchi A. [Genetic changes in liver metastasis of colorectal cancer and their clinical application]. Nihon Geka Gakkai Zasshi. 2001;102:370-375. [PubMed] |
14. | Miyaki M, Iijima T, Konishi M, Sakai K, Ishii A, Yasuno M, Hishima T, Koike M, Shitara N, Iwama T. Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene. 1999;18:3098-3103. [PubMed] [DOI] |
15. | Mikami T, Ookawa K, Shimoyama T, Fukuda S, Saito H, Munakata A. KAI1, CAR, and Smad4 expression in the progression of colorectal tumor. J Gastroenterol. 2001;36:465-469. [PubMed] [DOI] |
16. | Maitra A, Molberg K, Albores-Saavedra J, Lindberg G. Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol. 2000;157:1105-1111. [PubMed] [DOI] |
19. | Hu JY, Wang S, Zhu JG, Zhou GH, Sun QB. Expression of B7 costimulation molecules by colorectal cancer cells reducestumorigenicity and induces anti-tumor immunity. World J Gastroenterol. 1999;5:147-151. [PubMed] [DOI] |
20. | McCarthy DM, Hruban RH, Argani P, Howe JR, Conlon KC, Brennan MF, Zahurak M, Wilentz RE, Cameron JL, Yeo CJ. Role of the DPC4 tumor suppressor gene in adenocarcinoma of the ampulla of Vater: analysis of 140 cases. Mod Pathol. 2003;16:272-278. [PubMed] [DOI] |
21. | Pizzi S, Azzoni C, Bassi D, Bottarelli L, Milione M, Bordi C. Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer. 2003;98:1273-1282. [PubMed] [DOI] |
22. | Schwarte-Waldhoff I, Klein S, Blass-Kampmann S, Hintelmann A, Eilert C, Dreschers S, Kalthoff H, Hahn SA, Schmiegel W. DPC4/SMAD4 mediated tumor suppression of colon carcinoma cells is associated with reduced urokinase expression. Oncogene. 1999;18:3152-3158. [PubMed] [DOI] |
23. | Schwarte-Waldhoff I, Volpert OV, Bouck NP, Sipos B, Hahn SA, Klein-Scory S, Lüttges J, Klöppel G, Graeven U, Eilert-Micus C. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc Natl Acad Sci USA. 2000;97:9624-9629. [PubMed] [DOI] |
24. | Cao WX, Cheng QM, Fei XF, Li SF, Yin HR, Lin YZ. A study of preoperative methionine-depleting parenteral nutrition plus chemotherapy in gastric cancer patients. World J Gastroenterol. 2000;6:255-258. [PubMed] |
26. | Xia NS, Yang HJ, Zhang J, Lin CQ, Wang YB, Wang J, Zhan MY, Ng M. Prokaryotical expression of structural and non-structural proteins of hepatitis G virus. World J Gastroenterol. 2001;7:642-646. [PubMed] |
27. | Xu HY, Yang YL, Gao YY, Wu QL, Gao GQ. Effect of arsenic trioxide on human hepatoma cell line BEL-7402 cultured in vitro. World J Gastroenterol. 2000;6:681-687. [PubMed] [DOI] |
28. | Tascilar M, Skinner HG, Rosty C, Sohn T, Wilentz RE, Offerhaus GJ, Adsay V, Abrams RA, Cameron JL, Kern SE. The SMAD4 protein and prognosis of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2001;7:4115-4121. [PubMed] |
29. | Barberá VM, Martín M, Mariñoso L, Munné A, Carrato A, Real FX, Fabre M. The 18q21 region in colorectal and pancreatic cancer: independent loss of DCC and DPC4 expression. Biochim Biophys Acta. 2000;1502:283-296. [PubMed] [DOI] |
30. | Schneider G, Schmid RM. Genetic alterations in pancreatic carcinoma. Mol Cancer. 2003;2:15. [PubMed] [DOI] |
31. | Cowgill SM, Muscarella P. The genetics of pancreatic cancer. Am J Surg. 2003;186:279-286. [PubMed] [DOI] |
32. | Moore PS, Beghelli S, Zamboni G, Scarpa A. Genetic abnormalities in pancreatic cancer. Mol Cancer. 2003;2:7. [PubMed] [DOI] |
33. | Ohtaki N, Yamaguchi A, Goi T, Fukaya T, Takeuchi K, Katayama K, Hirose K, Urano T. Somatic alterations of the DPC4 and Madr2 genes in colorectal cancers and relationship to metastasis. Int J Oncol. 2001;18:265-270. [PubMed] [DOI] |