修回日期: 2003-08-01
接受日期: 2003-08-16
在线出版日期: 2004-04-15
肿瘤的发生过程中, 表型遗传修饰对肿瘤相关基因的表达起调控作用, 主要有总基因组甲基化水平降低, 癌基因的低甲基化和抑癌基因的高甲基化及抑癌基因的低乙酰化. 其中, DNA错配修复基因的失活与基因的甲基化紊乱密切相关. hMLH1(human Mut L homologue 1 )和hMSH2(human Mut S homologue 2 )是DNA错配修复的主要控制基因, 其表达的失活与该启动子区高甲基化有关. 本文就消化系肿瘤发生中错配修复与甲基化紊乱关系作一综述.
引文著录: 孙丹凤, 房静远. 错配修复基因甲基化紊乱与消化系肿瘤. 世界华人消化杂志 2004; 12(4): 965-968
Revised: August 1, 2003
Accepted: August 16, 2003
Published online: April 15, 2004
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12(4): 965-968
- URL: https://www.wjgnet.com/1009-3079/full/v12/i4/965.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i4.965
消化系统肿瘤的发生与很多因素有关, 其中作为抑制肿瘤发生的DNA错配修复基因的失活存在于很多肿瘤中, 主要为hMLH1基因. 该基因失活可产生微卫星不稳定现象, 多项研究发现其失活与启动子区高甲基化有关. 甲基化可使基因表达下调, 在真核生物中参与多种重要生物学功能. 错配修复基因的甲基化在肿瘤发生过程中起重要作用, 经甲基化抑制剂处理后该基因可重新表达, 从而恢复对DNA的错配修复功能.
错配修复(mismatch repair, MMR) 是细胞纠正复制错误的重要手段, 常出现在增生过程中以维持基因的精确性. hMLH1和hMSH 2是主要的DNA错配修复控制基因. MLH1和MSH2基因蛋白产物的功能是识别和修复错配的DNA. hMLH 1或hMSH 2基因完全失活时, 不能对转换和颠换突变进行识别和修复, 因而激活肿瘤基因或使某些抑癌基因失活, 最终可导致细胞死亡或肿瘤形成. 肿瘤形成时MMR缺失的细胞突变率提高1 000倍, 这可由微卫星不稳定(microsatellite instability, MSI)分析获知. 所谓MSI是指由于MMR突变功能异常, 造成DNA频发复制错误, 导致细胞的微卫星DNA序列发生改变, 表现为微卫星片段长度增加或减少.
DNA甲基化是脊椎动物DNA惟一的自然化学修饰方式, 由DNA甲基化转移酶(DNA methyltransferase, DNMT)介导, 将胞嘧啶转变为5-甲基胞嘧啶的一种反应, 主要发生在胞嘧啶-鸟嘌呤的CpG二核苷酸中的胞嘧啶碱基上. 真核生物中, DNA甲基化修饰的生物学功能有重要意义, 包括在转录水平抑制基因的表达、参与真核生物胚胎发育调节、参与基因组印迹和X染色体失活及与细胞分化、增生有关. 通常将CpG丰富的区域称为CpG岛, 多种基因的启动子和第1外显子富含CpG岛. 在正常组织中, 散在的CpG通常是甲基化的, 而CpG岛则为非甲基化. 在肿瘤发生过程中, 该模式发生逆转, 包括总基因组甲基化水平降低、癌基因的低甲基化和抑癌基因的高甲基化. 抑癌基因的高度广泛甲基化使DNA发生转录抑制, 抑癌基因的不能表达参与了肿瘤的发生. 近来又发现与肿瘤发生密切相关的错配修复基因亦存在这一现象. 甲基化酶抑制剂5-aza及其衍生物5-aza-dC可逆转这一反应而使甲基化水平降低.
hMLH 1和hMSH 2在生理状况下表达丰富的蛋白产物以维持基因的精确性, 当其发生突变、缺失或其他改变时, 则影响其正常表达, 出现错配修复功能障碍, 与肿瘤的发生有关[1]. 许多研究证实 hMLH1启动子甲基化在MSI阳性肿瘤中很常见, 该甲基化阻断 hMLH1的转录. Deng et al[2] 在研究伴MSI的散发性结直肠癌时, 在 hMLH 1启动子区鉴定出一个CCAAT盒, 发现在其上游2个碱基对处的一个CpG位点甲基化可抑制转录因子CBF与CCAAT盒的结合, 认为这是导致结肠癌中 hMLH 1基因失活的原因之一. 有学者[3]分析了hMLH 1启动子区CpG岛甲基化模式, 发现启动子特殊区域的甲基化程度在hMLH 1基因失活中起重要作用, 而其更上游区域及第1外显子起始区的甲基化状态与基因失活无必然联系. 这些发现都表明hMLH1基因的失活与其启动子某些特殊区域的甲基化有关. 另外, Deng et al[4]还证实, 在表达正常水平hMLH 1的17个结直肠细胞系和54例结直肠肿瘤中分别有4个细胞系和16例肿瘤存在hMLH 1位点的杂合性缺失(loss of heterozygosity, LOH), 而在所有表达非正常水平hMLH 1的9个细胞系和9例肿瘤中均未发现这一现象. 强烈提示杂合性缺失并不常与hMLH 1基因的失活有关. 一项研究[5]检测了100例原发性胃癌患者, 发现hMLH 1甲基化的发生频率与年龄增长呈正相关, 并提出hMLH 1甲基化在老年人群胃癌发生中有重要作用.
有关hMSH 2甲基化研究的报道相对较少, 除个别研究认为甲基化调控其基因表达[6]外, 多数实验显示其在结直肠癌[7]和胃癌[8-10]等发生中与该基因失活关系不明显. 相反, 该基因的甲基化与内分泌肿瘤[11]、肺癌[12]和乳腺癌[13]等的该基因失活有关.
胃癌与其他人类散发性肿瘤相比有较高的MSI. Shin et al[14]在研究 hMLH 1、hMSH 2的遗传状态与表达水平及MSI的关系时, 观察了11种人类胃癌细胞系. 发现仅3种伴有hMLH 1、hMSH 2遗传学改变的细胞系有MSI. 3种含野生型基因的细胞系, 尽管并无MSI, 其hMLH 1、hMSH 2表达明显下降. 由此可见, 相对低水平的 hMLH 1、hMSH 2表达仍可维持微卫星稳定(microsatellite stable, MSS). 该研究认为MSI仅与错配修复基因的遗传改变有关. 为研究 hMLH1启动子高甲基化在伴MSI多发性胃癌的形成中所起的作用, Jung et al[9]分析了来自15个患者的33例多发性胃癌. 发现所有高频MSI(high-frequency MSI, MSI-H)缺乏 hMLH 1的表达而仍有 hMSH 2表达, 无MSI或低频MSI (lower-frequency MSI, MSI-L)者则均有这2种基因的表达而所有不表达 hMLH 1者均存在该基因高甲基化状态. Fang et al[15]及其他不少学者[16-19]也发现伴MSI-H的胃癌其hMLH 1甲基化程度明显高于MSI-L或MSS者. 而早期胃癌中的MSI现象及由高甲基化所致的hMLH 1失活则较胃腺瘤更常见[20-21]. 散发性胃癌中约有15% MSI-H. Kang et al[10]研究了hMLH 1 和hMSH 2启动子甲基化与其基因表达在散发性胃癌中的相互关系, 以及这2个错配修复基因与复制错误(replication error, RER)的关系. 发现hMLH 1表达缺失仅存在于RER阳性组, 95% RER阳性肿瘤有hMLH 1高甲基化. 不管RER阳性或阴性, 所有肿瘤均无hMSH 2启动子甲基化, 并都表达hMSH 2. 提示在MSI-H散发性胃癌中, hMLH 1启动子区甲基化可能是基因失活的主要机制[22]. 一项研究[23]发现8例家族性胃癌(FGC)中有6例MSI, 4例MSI显示 hMLH 1表达紊乱, 且此4例MSI均有 hMLH 1启动子甲基化. 与此相反, 有 hMLH 1表达的胃癌则未发现该启动子区甲基化. 近来研究表明, 早期乳头状型胃腺癌较其他形态学类型的胃癌有更高及更广泛的MSI-H, 并指出由启动子甲基化导致的hMLH 1表达静默是引起乳头状胃腺癌错配修复功能失活的原因所在, 且是其形成过程中的一个早期事件[24]. 有学者提出hMLH 1启动子高甲基化是小凹型胃癌发展中一个起始的较重要因素[25], 而肠型胃癌启动子区的高甲基化较恶性弥漫型更常见[26]. Sakata et al[27]观察了17例单发性胃癌和13例多发性胃癌以及邻近和远离这些肿瘤的正常组织. 发现所有MSI-H肿瘤存在 hMLH 1启动子甲基化, 并与 hMLH 1蛋白表达相关. 而且伴MSI-H的单发性和多发性胃癌的邻近正常组织有同样高水平的 hMLH 1启动子甲基化. 提示MSI-H胃癌正常黏膜组织的 hMLH 1启动子高甲基化可增加其向肿瘤发展的危险性. Baek et al[8]检测86例胃腺瘤 hMLH 1和 hMSH 2的表达, 发现87% MSI阳性腺瘤hMLH 1表达缺失或减少, 而所有这些腺瘤都存在hMLH 1启动子甲基化. MSI阴性腺瘤hMLH 1表达失活仅占4%. hMSH 2基因则在大多数腺瘤中有大量表达, 而与MSI状态无关. 提示由启动子甲基化所致的 hMLH 1表达失活是MSI阳性胃腺瘤的一个早期事件, 并可能是其起源. 尽管大多数伴MSI的散发性胃癌与hMLH1高甲基化有关, 却仍有一部分胃癌虽有hMLH1高甲基化而不表现为MSI. 有学者[28]就此现象进行研究, 将hMLH1启动子区由远及近分成3个区域, 各自分析他们的高甲基化与MSI之间的联系. 最终发现hMLH 1启动子近端区域的高甲基化在伴有MSI的胃癌形成过程中起重要作用. Kang et al[29]亦发现靠近hMLH 1启动子转录近端某个特定小区域的甲基化往往与肿瘤的MSI阳性有关. 鉴于MSI与胃癌的密切关系, MSI很可能为将来胃癌的诊断及分类提供一种很好的分子生物学手段[30].
当前结直肠肿瘤形成模式以APC基因突变作为起始事件, 其他如凋亡相关基因、DNA错配修复基因等的异常则为结直肠癌发生的早期阶段奠定基础. 这些基因的失活常和启动子区高甲基化有关. 研究证明DNA甲基化在肿瘤发展过程中起潜在媒介作用. 结直肠癌中, DNA错配修复基因的失活与MSI有关. 许多研究发现大多数伴MSI的散发性结直肠癌有 hMLH 1启动子甲基化, 且该甲基化常与 hMLH 1表达缺失有关. 伴MSI的结直肠癌其高甲基化可通过去甲基化逆转而重新表达 hMLH 1, 并使MMR缺失的细胞系恢复MMR功能. 由此提出散发性结直肠癌的MMR是由 hMLH 1的表型遗传修饰即甲基化而失活. 10-15%的散发性结直肠癌及大多数遗传性非息肉性结直肠癌(hereditary nonpolyposis colorectal cancer, HNPCC) 伴有MSI-H, 其中HNPCC的错配修复基因失活常由突变引起, 而散发性结直肠癌的基因失活则如前所述与甲基化有关[31-33]. 因此对MSI-H肿瘤甲基化及基因突变的分析可作为HNPCC筛选的一种有效手段[34]. 虽然免疫组化技术亦能鉴定错配修复基因的突变情况, 但他不能取代对MSI的检测分析[35]. 另外, 血清学基础上的甲基化分析也可作为发现和监控MSI结直肠癌的一种手段[36]. Young et al[37]将按照Bethesda 标准规定的112例MSI-H家族性结直肠癌和57例MSI-H散发性结直肠癌相比较, 发现散发性肿瘤的MSI较HNPCC更为广泛. 在hMLH 1表达缺失的肿瘤中分别有87%的散发性肿瘤和55%的HNPCC有hMLH 1甲基化. Miyakura et al[38]在研究88例散发性结直肠癌时, 88.9%的MSI-H结直肠癌有hMLH 1启动子甲基化, 其中又有89%为完全甲基化并伴有hMLH 1蛋白表达减少. 在部分甲基化的病例中, 仅hMLH 1启动子上游区域出现甲基化. 在MSI-H的正常黏膜中亦有33.3%为部分甲基化. 因此认为hMLH 1启动子上游区域甲基化可能是MSI-H肿瘤发生过程中的一个早期事件[39]. 另外他们还提出, 甲基化的频率和女性[40-41]及年龄增长密切相关. 有学者提出一些右半结肠的增生性息肉可增加MSI散发性结直肠癌发生的概率, 肿瘤细胞亚群的hMLH 1 启动子甲基化在肿瘤发展过程中起决定性作用[42]. 15-25%的散发性结直肠癌有复制错误 (RER) 现象. 研究表明大多数(70%)RER阳性肿瘤细胞系突变表现型是由 hMLH 1启动子甲基化引起的, 而与杂合性缺失无关[43]. Cunningham et al[44]研究257例非选择性的结直肠癌患者, 其中88%的 hMLH 1阴性患者及所有MSI-H者有 hMLH 1启动子甲基化而未检测到 hMLH 1突变. 部分由炎症性肠病(infla-mmatory bowel disease, IBD)所致的肿瘤亦有MSI特征, 研究发现他们与 hMLH 1启动子甲基化密切相关, 尤其在MSI-H中. 同时 hMLH 1甲基化及MSI又与 hMLH 1表达减少明显相关. 因此, 现认为 hMLH 1甲基化导致至少一种IBD肿瘤亚型的DNA MMR缺失[45]. 研究表明, 由MMR缺失所致的结直肠癌对抗多种化疗药物, 包括5-氟尿嘧啶(5-FU). 体外试验显示, 5-aza-dC诱导的去甲基化反应可使MLH1蛋白重新表达, 进而克服对5-FU的抵抗, 这将为今后肿瘤化疗方案的完善提供帮助[46]. Plumb et al[47]的研究也支持这一观点. 值得注意的是, 近来有学者[48]提出MSI反而可逆转由DNA甲基化所致的结直肠癌不良预后, 其机制尚有待进一步研究.
迄今为止, 尚未明确MSI在肝癌发生过程中的作用. 一项研究[49]对36例肝癌的 hMLH 1和hMSH 2进行免疫组化分析, 显示所有肿瘤均染色阳性. 并对微卫星标记物BAT26进行检测, 结果无一肿瘤在该位点表现MSI. 这些发现提示MMR缺失在肝癌发生过程中无明显影响[50]. Kondo et al[51]研究来自40例患者的非癌组织及癌组织基因组DNA, 非癌组织的LOH、MSI、DNA甲基化分别占38%、15%和83%, 而癌组织此3类现象分别占98%、20%和100%. 未检测到由甲基化引起的 hMLH 1基因静默, 这一现象与肝癌低MSI相一致. 由此可见, 肝癌发生、发展中, LOH及DNA甲基化紊乱起着关键作用, 而与甲基化引起的 hMLH 1基因静默无关.
总之, 在肿瘤发生过程中, 错配修复基因 hMLH 1启动子区的高甲基化使该基因表达沉默, 导致细胞DNA MMR功能障碍, 以致胃癌和结直肠癌的发生. 甲基化酶抑制剂可逆转这一现象的事实, 可能为今后肿瘤的治疗提供一种新的思路.
编辑: N/A
1. | Ricciardiello L, Goel A, Mantovani V, Fiorini T, Fossi S, Chang DK, Lunedei V, Pozzato P, Zagari RM, De Luca L. Frequent loss of hMLH1 by promoter hypermethylation leads to microsatellite instability in adenomatous polyps of patients with a single first-degree member affected by colon cancer. Cancer Res. 2003;63:787-792. [PubMed] |
2. | Deng G, Chen A, Pong E, Kim YS. Methylation in hMLH1 promoter interferes with its binding to transcription factor CBF and inhibits gene expression. Oncogene. 2001;20:7120-7127. [PubMed] [DOI] |
3. | Kang YH, Bae SI, Kim WH. Comprehensive analysis of promoter methylation and altered expression of hMLH1 in gastric cancer cell lines with microsatellite instability. J Cancer Res Clin Oncol. 2002;128:119-124. [PubMed] [DOI] |
4. | Deng G, Peng E, Gum J, Terdiman J, Sleisenger M, Kim YS. Methylation of hMLH1 promoter correlates with the gene silencing with a region-specific manner in colorectal cancer. Br J Cancer. 2002;86:574-579. [PubMed] [DOI] |
5. | Nakajima T, Akiyama Y, Shiraishi J, Arai T, Yanagisawa Y, Ara M, Fukuda Y, Sawabe M, Saitoh K, Kamiyama R. Age-related hypermethylation of the hMLH1 promoter in gastric cancers. Int J Cancer. 2001;94:208-211. [PubMed] [DOI] |
6. | Kim HC, Kim CN, Yu CS, Roh SA, Kim JC. Methylation of the hMLH1 and hMSH2 promoter in early-onset sporadic colorectal carcinomas with microsatellite instability. Int J Colorectal Dis. 2003;18:196-202. [PubMed] |
7. | Cunningham JM, Christensen ER, Tester DJ, Kim CY, Roche PC, Burgart LJ, Thibodeau SN. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 1998;58:3455-3460. [PubMed] |
8. | Baek MJ, Kang H, Kim SE, Park JH, Lee JS, Paik YK, Kim H. Expression of hMLH1 is inactivated in the gastric adenomas with enhanced microsatellite instability. Br J Cancer. 2001;85:1147-1152. [PubMed] [DOI] |
9. | Jung HY, Jung KC, Shim YH, Ro JY, Kang GH. Methylation of the hMLH1 promoter in multiple gastric carcinomas with microsatellite instability. Pathol Int. 2001;51:445-451. [PubMed] [DOI] |
10. | Kang GH, Shim YH, Ro JY. Correlation of methylation of the hMLH1 promoter with lack of expression of hMLH1 in sporadic gastric carcinomas with replication error. Lab Invest. 1999;79:903-909. [PubMed] |
11. | Miturski R, Postawski K, Semczuk A, Bogusiewicz M, Baranowski W, Jakowicki JA, Keith G. Global DNA methylation in relation to hMLH1 and hMSH2 protein immunoreactivity in sporadic human endometrial carcinomas. Int J Mol Med. 2003;11:569-574. [PubMed] [DOI] |
12. | Wang YC, Lu YP, Tseng RC, Lin RK, Chang JW, Chen JT, Shih CM, Chen CY. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest. 2003;111:887-895. [PubMed] [DOI] |
13. | Murata H, Khattar NH, Kang Y, Gu L, Li GM. Genetic and epigenetic modification of mismatch repair genes hMSH2 and hMLH1 in sporadic breast cancer with microsatellite instability. Oncogene. 2002;21:5696-5703. [PubMed] [DOI] |
14. | Shin KH, Park JG. Microsatellite instability is associated with genetic alteration but not with low levels of expression of the human mismatch repair proteins hMSH2 and hMLH1. Eur J Cancer. 2000;36:925-931. [PubMed] [DOI] |
15. | Fang DC, Wang RQ, Yang SM, Yang JM, Liu HF, Peng GY, Xiao TL, Luo YH. Mutation and methylation of hMLH1 in gastric carcinomas with microsatellite instability. World J Gastroenterol. 2003;9:655-659. [PubMed] [DOI] |
16. | Fleisher AS, Esteller M, Tamura G, Rashid A, Stine OC, Yin J, Zou TT, Abraham JM, Kong D, Nishizuka S. Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene. 2001;20:329-335. [PubMed] [DOI] |
17. | Suzuki H, Itoh F, Toyota M, Kikuchi T, Kakiuchi H, Hinoda Y, Imai K. Distinct methylation pattern and microsatellite instability in sporadic gastric cancer. Int J Cancer. 1999;83:309-313. [PubMed] [DOI] |
18. | Halling KC, Harper J, Moskaluk CA, Thibodeau SN, Petroni GR, Yustein AS, Tosi P, Minacci C, Roviello F, Piva P. Origin of microsatellite instability in gastric cancer. Am J Pathol. 1999;155:205-211. [PubMed] [DOI] |
19. | Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 1999;59:159-164. [PubMed] |
20. | Kang GH, Shim YH, Jung HY, Kim WH, Ro JY, Rhyu MG. CpG island methylation in premalignant stages of gastric carcinoma. Cancer Res. 2001;61:2847-2851. [PubMed] |
21. | Kang GH, Lee S, Kim JS, Jung HY. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest. 2003;83:635-641. [PubMed] [DOI] |
22. | Bevilacqua RA, Simpson AJ. Methylation of the hMLH1 promoter but no hMLH1 mutations in sporadic gastric carcinomas with high-level microsatellite instability. Int J Cancer. 2000;87:200-203. [PubMed] [DOI] |
23. | Yanagisawa Y, Akiyama Y, Iida S, Ito E, Nomizu T, Sugihara K, Yuasa Y, Maruyama K. Methylation of the hMLH1 promoter in familial gastric cancer with microsatellite instability. Int J Cancer. 2000;85:50-53. [PubMed] [DOI] |
24. | Guo RJ, Arai H, Kitayama Y, Igarashi H, Hemmi H, Arai T, Hanai H, Sugimura H. Microsatellite instability of papillary subtype of human gastric adenocarcinoma and hMLH1 promoter hypermethylation in the surrounding mucosa. Pathol Int. 2001;51:240-247. [PubMed] [DOI] |
25. | Endoh Y, Tamura G, Ajioka Y, Watanabe H, Motoyama T. Frequent hypermethylation of the hMLH1 gene promoter in differentiated-type tumors of the stomach with the gastric foveolar phenotype. Am J Pathol. 2000;157:717-722. [PubMed] [DOI] |
26. | Oue N, Sentani K, Yokozaki H, Kitadai Y, Ito R, Yasui W. Promoter methylation status of the DNA repair genes hMLH1 and MGMT in gastric carcinoma and metaplastic mucosa. Pathobiology. 2001;69:143-149. [PubMed] [DOI] |
27. | Sakata K, Tamura G, Endoh Y, Ohmura K, Ogata S, Motoyama T. Hypermethylation of the hMLH1 gene promoter in solitary and multiple gastric cancers with microsatellite instability. Br J Cancer. 2002;86:564-567. [PubMed] [DOI] |
28. | Ishiguro K, Kawakami K, Maeda K, Ishida Y, Omura K, Watanabe G. Microsatellite instability in gastric cancer is closely associated with hMLH1 hypermethylation at the proximal region of the promoter. Int J Mol Med. 2003;12:603-608. [PubMed] [DOI] |
29. | Kang GH, Lee S, Shim YH, Kim JC, Ro JY. Profile of methylated CpG sites of hMLH1 promoter in primary gastric carcinoma with microsatellite instability. Pathol Int. 2002;52:764-768. [PubMed] [DOI] |
30. | Simpson AJ, Caballero OL, Pena SD. Microsatellite instability as a tool for the classification of gastric cancer. Trends Mol Med. 2001;7:76-80. [PubMed] [DOI] |
31. | Haydon AM, Jass JR. Emerging pathways in colorectal-cancer development. Lancet Oncol. 2002;3:83-88. [PubMed] [DOI] |
32. | Roh SA, Kim HC, Kim JS, Kim JC. Characterization of mutator pathway in younger-age-onset colorectal adenocarcinomas. J Korean Med Sci. 2003;18:387-391. [PubMed] [DOI] |
33. | Wheeler JM, Loukola A, Aaltonen LA, Mortensen NJ, Bodmer WF. The role of hypermethylation of the hMLH1 promoter region in HNPCC versus MSI+ sporadic colorectal cancers. J Med Genet. 2000;37:588-592. [DOI] |
34. | Potocnik U, Glavac D, Golouh R, Ravnik-Glavac M. Causes of microsatellite instability in colorectal tumors: implications for hereditary non-polyposis colorectal cancer screening. Cancer Genet Cytogenet. 2001;126:85-96. [DOI] |
35. | Salahshor S, Koelble K, Rubio C, Lindblom A. Microsatellite Instability and hMLH1 and hMSH2 expression analysis in familial and sporadic colorectal cancer. Lab Invest. 2001;81:535-541. [DOI] |
36. | Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61:900-902. [PubMed] |
37. | Young J, Simms LA, Biden KG, Wynter C, Whitehall V, Karamatic R, George J, Goldblatt J, Walpole I, Robin SA. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol. 2001;159:2107-2116. [PubMed] [DOI] |
38. | Miyakura Y, Sugano K, Konishi F, Ichikawa A, Maekawa M, Shitoh K, Igarashi S, Kotake K, Koyama Y, Nagai H. Extensive methylation of hMLH1 promoter region predominates in proximal colon cancer with microsatellite instability. Gastroenterology. 2001;121:1300-1309. [PubMed] [DOI] |
39. | Yuen ST, Chan TL, Ho JW, Chan AS, Chung LP, Lam PW, Tse CW, Wyllie AH, Leung SY. Germline, somatic and epigenetic events underlying mismatch repair deficiency in colorectal and HNPCC-related cancers. Oncogene. 2002;21:7585-7592. [PubMed] [DOI] |
40. | Ashktorab H, Smoot DT, Carethers JM, Rahmanian M, Kittles R, Vosganian G, Doura M, Nidhiry E, Naab T, Momen B. High incidence of microsatellite instability in colorectal cancer from African Americans. Clin Cancer Res. 2003;9:1112-1117. [PubMed] |
41. | Hawkins N, Norrie M, Cheong K, Mokany E, Ku SL, Meagher A, O'Connor T, Ward R. CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology. 2002;122:1376-1387. [PubMed] [DOI] |
42. | Hawkins NJ, Ward RL. Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas. J Natl Cancer Inst. 2001;93:1307-1313. [PubMed] [DOI] |
43. | Wheeler JM, Beck NE, Kim HC, Tomlinson IP, Mortensen NJ, Bodmer WF. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proc Natl Acad Sci U S A. 1999;96:10296-10301. [PubMed] [DOI] |
44. | Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, Burgart LJ, Halling KC, McDonnell SK, Schaid DJ, Walsh Vockley C. The frequency of hereditary defective mismatch repair in a prospective series of unselected colorectal carcinomas. Am J Hum Genet. 2001;69:780-790. [PubMed] [DOI] |
45. | Fleisher AS, Esteller M, Harpaz N, Leytin A, Rashid A, Xu Y, Liang J, Stine OC, Yin J, Zou TT. Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res. 2000;60:4864-4868. [PubMed] |
46. | Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int J Cancer. 2003;106:66-73. [PubMed] [DOI] |
47. | Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2'-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 2000;60:6039-6044. [PubMed] |
48. | Ward RL, Cheong K, Ku SL, Meagher A, O'Connor T, Hawkins NJ. Adverse prognostic effect of methylation in colorectal cancer is reversed by microsatellite instability. J Clin Oncol. 2003;21:3729-3736. [PubMed] [DOI] |
49. | Wang L, Bani-Hani A, Montoya DP, Roche PC, Thibodeau SN, Burgart LJ, Roberts LR. hMLH1 and hMSH2 expression in human hepatocellular carcinoma. Int J Oncol. 2001;19:567-570. [PubMed] [DOI] |
50. | Yamamoto H, Itoh F, Fukushima H, Kaneto H, Sasaki S, Ohmura T, Satoh T, Karino Y, Endo T, Toyota J. Infrequent widespread microsatellite instability in hepatocellular carcinomas. Int J Oncol. 2000;16:543-547. [PubMed] [DOI] |
51. | Kondo Y, Kanai Y, Sakamoto M, Mizokami M, Ueda R, Hirohashi S. Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis--A comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma. Hepatology. 2000;32:970-979. [PubMed] [DOI] |