修回日期: 2003-12-01
接受日期: 2003-12-16
在线出版日期: 2004-04-15
N/A
引文著录: 王春花, 成军, 郎振为, 王建军, 刘妍, 杨倩, 纪冬, 党晓燕. 富含脯氨酸的酪氨酸激酶-2与肝炎病毒关系的研究进展. 世界华人消化杂志 2004; 12(4): 943-947
Revised: December 1, 2003
Accepted: December 16, 2003
Published online: April 15, 2004
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12(4): 943-947
- URL: https://www.wjgnet.com/1009-3079/full/v12/i4/943.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i4.943
富含脯氨酸的酪氨酸激酶-2 (proline-rich tyrosine kinase 2, Pyk-2)是一种属于局灶黏附激酶(FAK)家族的细胞质中的酪氨酸激酶[1-2]. Pyk-2在多种组织中表达丰富, 包括大脑、肺、肠、肾、脾[3-4]和血管平滑肌细胞[5-7]. Pyk-2能被多种细胞外刺激物激活, 例如G蛋白耦合受体(G protein-coupled receptor, GPCR)激动剂, 蛋白激酶C(PKC)的活化, 细胞内钙离子浓度的升高, 紫外线(UV)辐射和细胞外摩尔渗透压浓度[1-2]. 此外, Eguchi et al[8]等还证明在小鼠血管平滑肌细胞血管紧张素II可通过提高细胞内钙离子浓度而激活Pyk-2. Pyk-2当酪氨酸残基自身磷酸化后就能为包括Src酪氨酸激酶家族的其他包含SH2 (src homology)结构域的蛋白提供结合位点[9-10]. 例如Pyk-2与c-Scr的结合导致接头蛋白转位到质膜和随后的依赖p21ras的细胞外信号调节激酶(ERK)1/2激活[10-11]. 越来越多的研究资料表明Pyk-2参与了许多细胞生命活动的代谢过程, 其与病毒性肝病的关系也引起人们的关注. 本文就近几年Pyk-2的研究状况作一简要综述.
Pyk-2具有多种命名, 比如相关黏附局灶酪氨酸激酶(related adhesion focal tyrosine kinase, RAFTK)、细胞黏附激酶-(cell adhesion kinase , CAK-)、细胞黏附依赖性酪氨酸激酶 (cell adhesion-ependent tyrosine kinase, CADTK)、或者局灶黏附激酶-2 (focal adhesion kinase-2, FAK2), 属于FAK非受体型酪氨酸激酶家族中的一员, 可以表达于不同的细胞类型中, 包括神经细胞和造血细胞[4,12-15]. Pyk-2与FAK具有明显的序列同源性(中心催化结构域具有60%相似性, 羧基端与氨基端都有40%相似性). 这两种激酶呈现出45%氨基酸同源性并且都缺少SH2或SH3结构域, 而在许多其他的胞质酪氨酸激酶中都具有此结构, 虽不包含SH2和SH3结构域却具有几个结合位点能与含有SH2/SH3的信号蛋白作用[4,13]. Pyk-2和FAK都具有长的氨基端和羧基端末端结构域中间夹杂有中心激酶结构域. 并且Pyk-2和FAK在高度保守的中央催化区具有同样全面的结构, 例如包含SH2结构域蛋白的磷酸化/停泊位点[16-17], 包含SH3结构域蛋白的富含脯氨酸结合位点[18-19], 以及有关的氨基末端带4.1(NH2-terminal band 4.1), 埃兹蛋白(ezrin)等蛋白的同源结构域[20]. 二者主要的自身磷酸化位点也是保守的. Pyk-2和FAK中这一位点已被证实可充当Src家族激酶的结合位点[9]. 其他几个与FAK相互作用的蛋白也被证实能与Pyk-2结合, 这种结合作用的生物学意义还没能完全阐明[9,18,21-23]. 例如与FAK相似, Pyk-2也具有大的氨基端和羧基端末端结构域借助他们Pyk-2能与几种信号分子和细胞骨架蛋白相互作用[9,18,21-22]. Ueda et al[24]利用酵母双杂交系统筛选鉴定出一种新型的与Pyk-2相互作用的蛋白命名为分子量为200 kD的FAK 家族激酶结合蛋白(FAK family kinase-interacting protein of 200 kD, FIP200). 体外结合实验和免疫共沉淀进一步证实了FIP200 和Pyk-2 的结合作用, 相似的实验也表明FIP200能与FAK结合.
尽管Pyk-2在结构上相似于FAK, 但Pyk-2似乎还有不同于FAK的细胞功能. 通过酵母双杂交或另外的基于酵母的克隆技术已鉴定出2种与Pyk-2相互作用蛋白, Nirs 和 Pap. Nirs是一种与果蝇视网膜变性蛋白B有关的跨膜蛋白[25]. Pap (和亚型)是一种具有Arf-GAP 活性的胞质蛋白, 参与了肺泡转运的调节[26]. 并且这两种蛋白似乎都与Pyk-2相互作用而不与FAK作用. 另外虽然FAK已被证实在整合素介导的细胞迁移过程中发挥重要作用[27-30], 但在纤维原细胞中Pyk-2的表达并不促进细胞迁移[31]. 缺乏局灶黏附激酶(FAK-/-)的纤维原细胞表现出形态上和迁移性的缺陷但可被FAK的再表达逆转. 作为FAK相关激酶的Pyk-2在FAK-/-细胞中可表达, 然而呈现出核周的分布并且功能上不能替代FAK[32]. 这是因为FAK的羧基端(FAK-CT)而非氨基端在体内可与1-整合素形成复合物[33-34]. FAK羧基端内一个被称为灶性黏附靶向基序的结构能促进FAK定位到整合素受体丛集区[35], 并且对于结合-整合素相关蛋白也是很重要的[36]. FAK和Pyk-2在其羧基端结构域都包含保守位点能结合-整合素相关蛋白桩蛋白(paxillin)[37-38]. 然而在纤维原细胞或平滑肌细胞中Pyk-2不能牢固地定位于病灶接触位点[31-39]. 随后的研究又提出通过FAK的整合素信号可保护细胞免于凋亡[40]和促进细胞周期的进程[41]. 相反在许多细胞系中Pyk-2的过量表达可诱导凋亡[42]. 尽管在整合素信号传导中Pyk-2的潜在功能不是很清楚, 但在许多其他的细胞过程中Pyk-2都发挥作用, 包括钙离子诱导的铁通道的调节和裂原激活蛋白激酶(MAPK)的激活[17]、Jannus蛋白N-末端激酶(JNK)活化[43-44]和在PC12细胞中Src介导的MAPK信号途径的激活[9]. Ren et al[45]发现FAK 和Pyk-2在细胞骨架组织中参与介导了不同的作用机制. 在纤维细胞中Pyk-2的过表达而非FAK诱导了细胞骨架结构的重建, 而且Pyk-2诱导的细胞骨架结构的重建能被FAK挽救. 为了深入研究Pyk-2介导的细胞骨架的重建机制, 有资料报道利用酵母双杂交系统筛选能与Pyk-2相互作用的蛋白. 并且确定了一种新型与Pyk-2相互作用的蛋白, 含有rhoGAP 蛋白的PH和SH3结构域(PH and SH3 domain containing rhoGAP protein, PSGAP). PSGAP在体内、体外均能促进GTPase 对CDC42 和 RhoA的催化活性. Pyk-2结合到PSGAP的SH3结构域, 抑制PSGAP对CDC42的作用从而激活CDC42的活性. 该研究表明PSGAP可作为 Pyk-2的一种介体通过小G蛋白调整细胞骨架的组建.
Almeida et al认为FAK和Pyk-2/FAK-CT在病灶接触位点上很可能协同促进促迁移信号复合物的形成, 该复合物也可能包括在这些位点上的活化的ERK2 和JNK. Klingleil et al[46]的研究认为当通常的结合SH2或SH3的蛋白靶向到FAK和Pyk-2就可以作为一种复合物的形式起到增强FAK-/- (focal adhesion kinase-iull)细胞迁移性的作用. 共同的作用蛋白募集例如Src家族的PTKs和p130Cas可能是增强迁移性信号的病灶接触相关信号复合物形成过程中的第一步. 已有的研究表明p130Cas的酪氨酸磷酸化和ERK2活化而介导的信号能协同增强细胞的迁移, 据此Candice et al认为FAK作用于p130Cas 和ERK2信号的上游而协同这些迁移增强信号.
Siciliano et al[47]利用大白鼠海马回切片和皮质的突触小体来研究两种高度相关的细胞质的酪氨酸激酶Pyk-2和FAK的调节机制, 结果发现膜的去极化能增加Pyk-2和FAK的酪氨酸磷酸化, 谷氨酸盐和离子化谷氨酸盐受体特殊的促效药能促进FAK的酪氨酸磷酸化而对Pyk-2没有作用. 作者认为海马回切片中, 在涉及到Ca2+ 和PKC的信号途径中Pyk-2和FAK的酪氨酸磷酸化受到不同的调节. Pyk-2和FAK可能在各种神经元的活动之间提供了某些特殊的连接, 增加了胞质Ca2+ 和蛋白酪氨酸磷酸化, 这些对于神经元的生存和突触的可塑性非常重要.
1.2.1 影响Pyk-2活性的因素: Pyk-2能被多种能升高细胞内钙离子浓度的细胞外刺激物所激活[9,13,43-44], 包括乙酰胆碱受体或诱导钙内流的电压式钙通道, G蛋白耦连受体激动剂例如血管舒缓激肽、溶血磷脂酸、血管紧张素II以及其他能促进钙从细胞内钙库释放的递质[7,9,23,44]. 此外佛波醇酯, G蛋白藕连受体激活剂和整合素触发的信号都可能导致Pyk-2 的酪氨酸磷酸化[9,13]. 有报道认为自然杀伤(NK)细胞表达Pyk-2而非FAK, -1/2整合素由内到外(outside-in)信号传导促进Pyk-2的激活[48-49]. 最近的研究又表明Pyk-2 可能通过与一种新型的GTPase 激活蛋白称为Pap相互作用而参与了肺泡的转运[26]. Wang et al[50]在研究水杨酸盐对参与血管紧张素II和血小板来源生长因子激活的某些信号传导元件可能的作用位点时发现水杨酸盐能抑制钙离子依赖的非受体型酪氨酸激酶Pyk-2和c-Src的磷酸化.
1.2.2 PYK-2参与了多种信号途径: Pyk-2最先被认识是作为一种与MAPK和JNK信号途径连接的关键酶, 而此信号途径在细胞生长和黏附过程中发挥重要作用. 近来Pyk-2更被证明是多种细胞信号途径的一种上游调节因子, 包括Src和MAPK家族的多种成员[1].
在血管平滑肌细胞(VSMC)中血管紧张素II能诱导介于Pyk-2和ERK1/2、Src、Shc、Grb2 这4种因子的上游调控因子之间的复合物形成, 表明Pyk-2参与了血管紧张素II诱导激活的ERK1/2 的调控. 已有的研究已发现在血管平滑肌细胞中Pyk-2参与了血管紧张素II诱导的蛋白合成及其此过程中涉及到的两条信号传导途径的调节, 即ERK1/2和磷脂酰激酶-3/Akt途径. Rocic et al[51]在培养的VSMC中利用反义寡核苷酸下调Pyk-2的表达. 结果发现Pyk-2的表达下调80%导致由血管紧张素II诱导的ERK1/2、p70S6激酶和Akt活性受到80%抑制, 而且Pyk-2的下调导致血管紧张素II诱导的蛋白合成受到完全抑制. 作者认为Pyk-2作为ERK1/2和磷脂酰激酶-3/Akt途径的一种上游调节因子参与了血管紧张素II诱导的VSMC蛋白合成.
再如Park et al[52]发现PC12细胞中蛋白激酶A(PKA)对于去极化诱导的ERK和p38的激活是必需的, 此外还发现去极化诱导的Pyk-2的酪氨酸残基的磷酸化可由于PKA的抑制而被阻断, 而Pyk-2是MAPK活化的一个关键的钙敏性上游调节因子. 与去极化诱导的信号途径相反, 由缓激肽, 一种G蛋白耦连受体激动剂, 不能被PKA的抑制而被阻断. 作者认为PKA的抑制阻断了去极化诱导的Pyk-2/MAP激酶途径的活化, 因此阻断了早期基因的表达.
Sorokin et al在大鼠和人肾小球系膜细胞中研究了ERK和p38丝裂原活化蛋白激酶内皮素(ET)-依赖性激活的分子机制, 发现在表达Pyk-2结构域阴性的人和大鼠肾小球系膜细胞中, ET-1诱导的p38 MAPK途径(而不是ERK途径)激活受到抑制. 这表明Pyk-2参与了ET-1介导的p38 MAP激酶级联反应激活.
Jeon et al[53]报道在大鼠海马回中通过电惊厥休克(ECS)可以激活MAPKs、MEK和Rafs, 由于在神经细胞中有报道Pyk-2和Src参与了MAPK的激活, 受此启发作者探讨了电惊厥休克后Pyk-2是否为Raf-MEK-MAPK级联反应的上游途径, 结果检测到ECS后大鼠海马回中Pyk-2的酪氨酸磷酸化和激活. ECS能瞬时增加Pyk-2多个酪氨酸残基的磷酸化, 并且这种磷酸化作用1 min后达到高峰10 min后降到基础值; 1 min后也观察到Pyk-2与Src和Grb2、Grb2与Ras的结合增强. 综合实验结果作者认为ECS激活 Pyk-2, 其经由Src、Grb2和Ras将信号转导到MAPK级联反应.
Sancho et al[54]发现Pyk-2与微管组织中心(microtubule-organizing center, MTOC)共定位于迁移性NK细胞的蔓延边缘. 当多克隆的NK细胞结合到K562靶位时, Pyk-2就异位到NK与靶细胞相互作用区域. 此过程的特异性体现在具有抑制或激活CD94/NKG2表位的NK细胞中. Pyk-2、MTOC和桩蛋白(paxillin)转移到NK与靶细胞相互作用区域, 此过程的调节是建立在控制靶细胞杀伤的NK细胞受体介导的对靶细胞的特异性识别的基础上.并行体外激酶测定表明Pyk-2 能被特异性的信号激活, 这些信号能触发其移位和NK细胞介导的细胞毒性. 野生型和显负性的Pyk-2突变体二者的过表达, 而非ZAP-70野生型能阻止MTOC和桩蛋白特异性的移位, 并且可阻断NK细胞的细胞毒性反应.作者认为Pyk-2的区室化与有效的信号转导有关; 另外, 该研究还表明Pyk-2在能调节细胞毒性反应的信号复合物的组装过程中发挥重要作用.
体内葡萄糖既可作为一种营养因子又是生理和病理过程的调节因子. Gautam et al 报道葡萄糖和某些糖类能通过一种机制快速激活ERK, 该机制不依赖葡萄糖的摄入和新陈代谢以及PKC, 而依赖PYK-2、GRB2、SOS、RAS、RAF和MEK1并且通过葡萄糖(运)载体1(glucose transporter)的过表达得到放大而不是Glut2、Glut3或 Glut4. 这种放大作用不依赖葡萄糖的摄取而依赖Glut1 羧基端的第463-468 aa, IASGFR. Glut1 羧基端的第469-492 的残基端缺失对这种机制是无效的, 但是第465位的丝氨酸或468位的精氨酸的突变产生的显负性体能抑制葡萄糖依赖的ERK激活. 葡萄糖促进Pyk-2 第402和881位的酪氨酸残基磷酸化和Pyk-2 结合到Myc-Glut1上. 据此作者认为通过一种需要Pyk-2和 Glut1 羧基端的第463-468残基 IASGFR 参与的机制, 葡萄糖激活GRB2/SOS/RAS/RAF/MEK1/ERK信号途径, 并且在葡萄糖将信号传导到Pyk-2 和 ERK的过程中Glut1充当了一种传感器, 换能器和放大器的作用.
Pyk-2和雄激素受体(androgen receptor, AR), 在前列腺癌进程中的一个关键转录因子, 他们之间的连接关系仍是不清楚. Wang et al[55]报道利用全长的雄激素受体结合蛋白, ARA55, 一种共调节因子作为诱饵, 分离到ARA55相互作用蛋白Pyk-2, 并且证实Pyk-2通过灭活ARA55能抑制AR的反式激活作用. 这种灭活作用是由于Pyk-2对于ARA55的第43位直接磷酸化的结果.
Pyk-2在前列腺上皮细胞中的表达与前列腺癌的恶性程度相关. Picascia et al[56]利用PC3细胞系来研究Pyk-2在前列腺细胞增生和分化过程中的调节作用. 在PC3细胞中Pyk-2能被常规的刺激物例如肿瘤坏死因子-和溶血磷脂酸(LPA)所激活. 而LPA不但刺激Pyk-2的磷酸化还能诱导这些细胞中ERK1/2的激活. PC3细胞克隆(PC3-PKM)能表达显负性的激酶缺陷型Pyk-2的突变体, 该细胞系的增生与野生型PC3细胞相比明显下降. 作者认为Pyk-2在前列腺细胞增生的调节中发挥作用, 其表达水平可作为前列腺细胞分化状态的一种灵敏的指示标志.
糖元合成激酶3(GSK3)是一种参与了多种细胞活动的丝氨酸/色氨酸激酶. 其酪氨酸残基被磷酸化后表现出活化. Hartigan et al[57]首先证实GSK3在体内和原位都是Pyk-2的作用底物. GSK3的酪氨酸被磷酸化后表现出活.
单核细胞趋化蛋白1(MCP-1)在动脉粥样硬化和炎症过程中具有决定性的作用. Yamasaki et al[58]研究了单核细胞系THP-1中Pyk-2在MCP-1介导的信号转导中的作用, 发现MCP-1刺激后Pyk-2的酪氨酸残基被快速磷酸化, Lyn、Shc和桩蛋白的酪氨酸残基也被磷酸化. 通过免疫沉淀和免疫印迹实验检测到这些免疫分子间的结合, 发现Pyk-2和Lyn的结合依赖于MCP-1的刺激和Pyk-2酪氨酸残基的磷酸化, p38的磷酸化也依赖Pyk-2酪氨酸残基的磷酸化, 然而Pyk-2和桩蛋白, Grb2的结合不受MCP-1的刺激影响. ERK 的磷酸化并没有因为负性激酶Pyk-2的过表达而受到影响. 作者认为在THP-1细胞中Pyk-2可以与桩蛋白、Grb2、Lyn 形成复合物, 但是Pyk-2并不总是参与MCP-1介导的信号转导途径.
乙型肝炎病毒(HBV)基因组的X 开放读码框(ORF)编码一条145-154 aa的蛋白, 分子量17 kD左右. 乙型肝炎病毒X蛋白(HBxAg)对于土拨鼠的嗜肝病毒感染和其他哺乳动物嗜肝DNA病毒在体内复制是必不可少的. HBx对Src的激活对于HBV DNA的复制非常重要. Bouchard et al[59]报道HBx激活胞质钙离子依赖的Pyk-2, 其是Src激酶的激活剂. 抑制Pyk-2或者由线粒体钙通道介导的钙信号就可以阻断HBx对于HBV DNA复制的激活, 这表明HBx作用于线粒体钙通道的调节. 能升高胞质钙离子浓度的反应物能替代HBx蛋白在HBV DNA复制中的作用. 因此作者认为对于HBV DNA的复制胞质钙离子浓度的变化是一种基本条件并且由HBx蛋白介导.
Pyk-2作为FAK非受体型酪氨酸激酶家族中的一员, 可被细胞内外多种刺激诱导激活, 参与了多种信号传导途径, 再细胞的生存代谢过程具有重要的作用, 进一步阐明其在肝脏疾病发生发展过程中的作用机制对于寻找肝病治疗预防的突破口很有意义, 也是我们面临的艰巨任务.
编辑: N/A
1. | Avraham H, Park SY, Schinkmann K, Avraham S. RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 2000;12:123-133. [PubMed] [DOI] |
2. | Girault JA, Costa A, Derkinderen P, Studler JM, Toutant M. FAK and PYK2/CAKbeta in the nervous system: a link between neuronal activity, plasticity and survival? Trends Neurosci. 1999;22:257-263. [PubMed] [DOI] |
3. | Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T. Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995;270:21206-21219. [PubMed] [DOI] |
4. | Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J, Jiang S, Pasztor LM, White RA, Groopman JE. Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem. 1995;270:27742-27751. [PubMed] [DOI] |
5. | Zheng C, Xing Z, Bian ZC, Guo C, Akbay A, Warner L, Guan JL. Differential regulation of Pyk2 and focal adhesion kinase (FAK). The C-terminal domain of FAK confers response to cell adhesion. J Biol Chem. 1998;273:2384-2389. [PubMed] [DOI] |
6. | Sabri A, Govindarajan G, Griffin TM, Byron KL, Samarel AM, Lucchesi PA. Calcium- and protein kinase C-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res. 1998;83:841-851. [PubMed] [DOI] |
7. | Brinson AE, Harding T, Diliberto PA, He Y, Li X, Hunter D, Herman B, Earp HS, Graves LM. Regulation of a calcium-dependent tyrosine kinase in vascular smooth muscle cells by angiotensin II and platelet-derived growth factor. Dependence on calcium and the actin cytoskeleton. J Biol Chem. 1998;273:1711-1718. [PubMed] [DOI] |
8. | Eguchi S, Iwasaki H, Inagami T, Numaguchi K, Yamakawa T, Motley ED, Owada KM, Marumo F, Hirata Y. Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertension. 1999;33:201-206. [PubMed] [DOI] |
9. | Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996;383:547-550. [PubMed] [DOI] |
10. | Blaukat A, Ivankovic-Dikic I, Grönroos E, Dolfi F, Tokiwa G, Vuori K, Dikic I. Adaptor proteins Grb2 and Crk couple Pyk2 with activation of specific mitogen-activated protein kinase cascades. J Biol Chem. 1999;274:14893-14901. [PubMed] [DOI] |
11. | Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ. Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. J Biol Chem. 1997;272:19125-19132. [PubMed] [DOI] |
12. | Earp HS, Huckle WR, Dawson TL, Li X, Graves LM, Dy R. Angiotensin II activates at least two tyrosine kinases in rat liver epithelial cells. Separation of the major calcium-regulated tyrosine kinase from p125FAK. J Biol Chem. 1995;270:28440-28447. [PubMed] [DOI] |
13. | Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK-2 involved in Ca2+ induced regulation of ion channel and MAP kinase functions. Nature. 1995;376:737-745. |
14. | Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T. Cloning and characterization of cell adhesion kinase p, a novel protein tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995;270:21206-21219. |
15. | Herzog H, Nicholl J, Hort YJ, Sutherland GR, Shine J. Molecular cloning and assignment of FAK2, a novel human focal adhesion kinase, to 8p11.2-p22 by nonisotopic in situ hybridization. Genomics. 1996;32:484-486. [PubMed] [DOI] |
16. | Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature. 1994;372:786-791. [PubMed] [DOI] |
17. | Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995;376:737-745. [PubMed] [DOI] |
18. | Astier A, Avraham H, Manie SN, Groopman J, Canty T, Avraham S, Freedman AS. The related adhesion focal tyrosine kinase is tyrosine-phosphorylated after beta1-integrin stimulation in B cells and binds to p130cas. J Biol Chem. 1997;272:228-232. [PubMed] [DOI] |
19. | Polte TR, Hanks SK. Complexes of focal adhesion kinase (FAK) and Crk-associated substrate (p130(Cas)) are elevated in cytoskeleton-associated fractions following adhesion and Src transformation. Requirements for Src kinase activity and FAK proline-rich motifs. J Biol Chem. 1997;272:5501-5509. [PubMed] [DOI] |
20. | Girault JA, Labesse G, Mornon JP, Callebaut I. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem Sci. 1999;24:54-57. [PubMed] [DOI] |
21. | Salgia R, Avraham S, Pisick E, Li JL, Raja S, Greenfield EA, Sattler M, Avraham H, Griffin JD. The related adhesion focal tyrosine kinase forms a complex with paxillin in hematopoietic cells. J Biol Chem. 1996;271:31222-31226. [PubMed] [DOI] |
22. | Hiregowdara D, Avraham H, Fu Y, London R, Avraham S. Tyrosine phosphorylation of the related adhesion focal tyrosine kinase in megakaryocytes upon stem cell factor and phorbol myristate acetate stimulation and its association with paxillin. J Biol Chem. 1997;272:10804-10810. [PubMed] [DOI] |
23. | Li X, Earp HS. Paxillin is tyrosine-phosphorylated by and preferentially associates with the calcium-dependent tyrosine kinase in rat liver epithelial cells. J Biol Chem. 1997;272:14341-14348. [PubMed] [DOI] |
24. | Ueda H, Abbi S, Zheng C, Guan JL. Suppression of Pyk2 kinase and cellular activities by FIP200. J Cell Biol. 2000;149:423-430. [PubMed] [DOI] |
25. | Lev S, Hernandez J, Martinez R, Chen A, Plowman G, Schlessinger J. Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mol Cell Biol. 1999;19:2278-2288. [PubMed] [DOI] |
26. | Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J. Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol. 1999;19:2338-2350. [PubMed] [DOI] |
27. | Ilić D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995;377:539-544. [PubMed] [DOI] |
28. | Cary LA, Chang JF, Guan JL. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J Cell Sci. 1996;109:1787-1794. [PubMed] |
29. | Cary LA, Han DC, Polte TR, Hanks SK, Guan JL. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol. 1998;140:211-221. [PubMed] [DOI] |
30. | Gilmore AP, Romer LH. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol Biol Cell. 1996;7:1209-1224. [PubMed] [DOI] |
31. | Sieg DJ, Ilić D, Jones KC, Damsky CH, Hunter T, Schlaepfer DD. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. EMBO J. 1998;17:5933-5947. [PubMed] [DOI] |
32. | Klingbeil CK, Hauck CR, Hsia DA, Jones KC, Reider SR, Schlaepfer DD. Targeting Pyk-2 to beta 1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J Cell Biol. 2001;152:97-110. |
33. | Chen LM, Bailey D, Fernandez-Valle C. Association of beta 1 integrin with focal adhesion kinase and paxillin in differentiating Schwann cells. J Neurosci. 2000;20:3776-3784. [PubMed] |
34. | Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD. FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol. 2000;2:249-256. [PubMed] [DOI] |
35. | Hildebrand JD, Schaller MD, Parsons JT. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J Cell Biol. 1993;123:993-1005. [PubMed] [DOI] |
36. | Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL. Interaction of focal adhesion kinase with cytoskeletal protein talin. J Biol Chem. 1995;270:16995-16999. [PubMed] [DOI] |
37. | Tachibana K, Sato T, D'Avirro N, Morimoto C. Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J Exp Med. 1995;182:1089-1099. [PubMed] [DOI] |
38. | Liu S, Thomas SM, Woodside DG, Rose DM, Kiosses WB, Pfaff M, Ginsberg MH. Binding of paxillin to alpha4 integrins modifies integrin-dependent biological responses. Nature. 1999;402:676-681. [PubMed] [DOI] |
39. | Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G, Hanks SK. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc Natl Acad Sci U S A. 1999;96:9021-9026. [PubMed] [DOI] |
40. | Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol. 1996;134:793-799. [PubMed] [DOI] |
41. | Zhao JH, Reiske H, Guan JL. Regulation of the cell cycle by focal adhesion kinase. J Cell Biol. 1998;143:1997-2008. [PubMed] [DOI] |
42. | Xiong W, Parsons JT. Induction of apoptosis after expression of PYK2, a tyrosine kinase structurally related to focal adhesion kinase. J Cell Biol. 1997;139:529-539. [PubMed] [DOI] |
43. | Tokiwa G, Dikic I, Lev S, Schlessinger J. Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996;273:792-794. [PubMed] [DOI] |
44. | Yu H, Li X, Marchetto GS, Dy R, Hunter D, Calvo B, Dawson TL, Wilm M, Anderegg RJ, Graves LM. Activation of a novel calcium-dependent protein-tyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation. J Biol Chem. 1996;271:29993-29998. [PubMed] [DOI] |
45. | Ren XR, Du QS, Huang YZ, Ao SZ, Mei L, Xiong WC. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J Cell Biol. 2001;152:971-984. [PubMed] [DOI] |
46. | Klingbeil CK, Hauck CR, Hsia DA, Jones KC, Reider SR, Schlaepfer DD. Targeting Pyk2 to beta 1-integrin-containing focal contacts rescues fibronectin-stimulated signaling and haptotactic motility defects of focal adhesion kinase-null cells. J Cell Biol. 2001;152:97-110. [PubMed] [DOI] |
47. | Siciliano JC, Toutant M, Derkinderen P, Sasaki T, Girault JA. Differential regulation of proline-rich tyrosine kinase 2/cell adhesion kinase beta (PYK2/CAKbeta) and pp125(FAK) by glutamate and depolarization in rat hippocampus. J Biol Chem. 1996;271:28942-28946. [PubMed] [DOI] |
48. | Gismondi A, Bisogno L, Mainiero F, Palmieri G, Piccoli M, Frati L, Santoni A. Proline-rich tyrosine kinase-2 activation by beta 1 integrin fibronectin receptor cross-linking and association with paxillin in human natural killer cells. J Immunol. 1997;159:4729-4736. [PubMed] |
49. | Rodríguez-Fernández JL, Gómez M, Luque A, Hogg N, Sánchez-Madrid F, Cabañas C. The interaction of activated integrin lymphocyte function-associated antigen 1 with ligand intercellular adhesion molecule 1 induces activation and redistribution of focal adhesion kinase and proline-rich tyrosine kinase 2 in T lymphocytes. Mol Biol Cell. 1999;10:1891-1907. [PubMed] [DOI] |
50. | Wang Z, Brecher P. Salicylate Inhibits Phosphorylation of the Nonreceptor Tyrosine Kinases, Proline-Rich Tyrosine Kinase 2 and c-Src. Hypertension. 2001;37:148-153. [PubMed] [DOI] |
51. | Rocic P, Lucchesi PA. Down-regulation by antisense oligonucleotides establishes a role for the proline-rich tyrosine kinase PYK2 in angiotensin ii-induced signaling in vascular smooth muscle. J Biol Chem. 2001;276:21902-21906. [PubMed] [DOI] |
52. | Park JH, Park JK, Bae KW, Park HT. Protein kinase A activity is required for depolarization-induced proline-rich tyrosine kinase 2 and mitogen-activated protein kinase activation in PC12 cells. Neurosci Lett. 2000;290:25-28. [PubMed] [DOI] |
53. | Jeon SH, Oh SW, Kang UG, Ahn YM, Bae CD, Park JB, Kim YS. Electroconvulsive shock increases the phosphorylation of Pyk2 in the rat hippocampus. Biochem Biophys Res Commun. 2001;282:1026-1030. [PubMed] [DOI] |
54. | Sancho D, Nieto M, Llano M, Rodríguez-Fernández JL, Tejedor R, Avraham S, Cabañas C, López-Botet M, Sánchez-Madrid F. The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing. J Cell Biol. 2000;149:1249-1262. [PubMed] [DOI] |
55. | Wang X, Yang Y, Guo X, Sampson ER, Hsu CL, Tsai MY, Yeh S, Wu G, Guo Y, Chang C. Suppression of androgen receptor transactivation by Pyk2 via interaction and phosphorylation of the ARA55 coregulator. J Biol Chem. 2002;277:15426-15431. [PubMed] [DOI] |
56. | Picascia A, Stanzione R, Chieffi P, Kisslinger A, Dikic I, Tramontano D. Proline-rich tyrosine kinase 2 regulates proliferation and differentiation of prostate cells. Mol Cell Endocrinol. 2002;186:81-87. [PubMed] [DOI] |
57. | Hartigan JA, Xiong WC, Johnson GV. Glycogen synthase kinase 3beta is tyrosine phosphorylated by PYK2. Biochem Biophys Res Commun. 2001;284:485-489. [PubMed] [DOI] |