修回日期: 2003-11-05
接受日期: 2003-11-13
在线出版日期: 2004-03-15
目的: 探讨抗氧化剂N-乙酰半胱氨酸(N-acetylcysteine, NAC)对急性胰腺炎大鼠胰腺核因子-B(nuclear factor-kappa B, NF-κB)和诱导型一氧化氮合酶 (inducible nitric oxide synthase, iNOS)表达的影响.
方法: ♂SD大鼠95只, 随机分成正常对照组(C组, 25只)、急性胰腺炎组(A组, 35只)和NAC干预组(N组, 35只). A组分2次腹腔内注射8 g/L的L-精氨酸(L-arginine, L-Arg) 1.2 mg/g诱导急性坏死性胰腺炎(acute necrotizing pancreatitis, ANP)模型; C组同法腹腔内注射等量生理盐水; N组先提前1h腹腔内注射0.5 mol/L的NAC 0.05 mg/g, 然后同A组方法诱导ANP. 在首次注射L-Arg后于6, 12, 24, 36, 48 h 5个时点分批处死大鼠, 检测胰腺NF-κB及 iNOS活性.
结果: N组NF-κB浓度在ANP早期比A组的明显降低(10.4±2.3 vs 89.7±6.4, 6.8±3.2 vs 21.5±3.5, 7.9±3.4 vs 32.5±4.5, 5.4±2.7vs 14.7±5.2, 5.0±3.7vs 11.1±2.3, P<0.05 及 P<0.01). A组各时点iNOS明显升高, N组各时点iNOS活性均较A组的明显下降(15.2±4.0 vs 24.2±3.8, 28.3±8.0 vs 36.8±6.0, 25.2±3.8 vs 30.5±3.5, 21.2±3.7 vs 28.7±7.2, 18.8±5.5 vs 28.2±4.2, P<0.05及P<0.01).
结论: 抗氧化剂可通过抑制NF-κB的激活而抑制iNOS的表达.
引文著录: 谭至柔, 唐国都, 姜海行, 邓德海, 袁海锋. 抗氧化剂对急性胰腺炎大鼠核因子-B和一氧化氮合酶的影响. 世界华人消化杂志 2004; 12(3): 711-713
Revised: November 5, 2003
Accepted: November 13, 2003
Published online: March 15, 2004
AIM: To observe the influence of antioxidant N-acetylcysteine (NAC) on nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) in pancreatic tissue of rats with acute necrotizing pancreatitis (ANP).
METHODS: A total of 95 Spraque-Dawley (SD) male rats were randomly divided into control group (group C, n = 25), acute pancreatitis group (group A, n = 35) and NAC intervention group (group N, n = 35). In group A, SD rats were injected twice intraperitoneally with 8 g/L L-arginine (2×1.2 mg/g) in an interval of 1 hour for ANP. In group C, SD rats received the same amount of saline at the same time. In group N, 0.5 mol/L NAC (0.05 mg/g) was administered intraperitoneally 1 hour before the start of L-arginine injection. Animals were killed at 6, 12, 24, 36, and 48 hours after the first L-arginine injection. The concentration of NF-κB and the activity of iNOS in rat's pancreatic tissue of each group were assayed.
RESULTS: The concentration of NF-κB in pancreatic tissue in group N significantly decreased in earlier period than that in group A (10.4±2.3 vs 89.7±6.4, 6.8±3.2 vs 21.5±3.5, 7.9±3.4 vs 32.5±4.5, 5.4±2.7 vs 14.7±5.2, and 5.0±3.7 vs 11.1±2.3, P < 0.05 or P < 0.01). iNOS activity increased in group A, whereas it significantly decreased in group N (15.2± 4.0 vs 24.2±3.8, 28.3±8.0 vs 36.8±6.0, 25.2±3.8 vs 30.5±3.5 , 21.2±3.7 vs 28.7±7.2, and 18.8±5.5 vs 28.2±4.2, P < 0.05 or P < 0.01).
CONCLUSION: Antioxidants may decrease the activity of iNOS through the inhibition of NF-κB activation.
- Citation: Tan ZR, Tang GD, Jiang HX, Deng DH, Yuan HF. Effects of antioxidant on NF-κB and iNOS in rats with acute necrotizing pancreatitis. Shijie Huaren Xiaohua Zazhi 2004; 12(3): 711-713
- URL: https://www.wjgnet.com/1009-3079/full/v12/i3/711.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i3.711
急性胰腺炎(acute pancreatitis, AP)是临床常见急症之一[1-8], 尤其是急性出血坏死性胰腺炎(acute necrotizing pancreatitis, ANP)临床表现危重, 病死率高[9-10], 其发病机制极为复杂且尚未完全阐明[11-13]. 最近的研究表明, 前炎症因子iNOS的过度表达参与加重AP时对胰腺组织的损害[14-15]. iNOS在正常生理条件下并不表达, 只有在炎症等病理条件下细胞受到刺激后方表达, 但iNOS的转录合成还受到转录因子复合体NF-κB的调控[16]; 抗氧化剂N-乙酰半胱氨酸(NAC)对NF-κB活性有抑制作用[17]. 但NAC在ANP的发展中对大鼠胰腺组织NF-κB、iNOS活性的影响, 国内外尚未见报道. 我们采用分2次腹腔内注射大剂量左旋精氨酸(L-arginine, L-Arg)法制备大鼠ANP模型, 观察NAC对大鼠胰腺组织NF-κB, iNOS活性的影响及其意义.
健康♂SD大鼠95只, 2-3月龄, 体质量250-300 g (广西医科大学动物中心提供). iNOS检测试剂盒购自南京建成生物工程研究所, 大鼠转录因子检测试剂盒购自美国Clontech公司. L-Arg, NAC, 蛋白酶抑制物混合液, 胰蛋白酶抑制剂, 羟乙基哌嗪乙磺酸(HEPES), 二硫苏糖醇(DTT)均购自美国Sigma公司.
大鼠随机分成3组: 生理盐水对照组(C组, 25只), 急性胰腺炎组(A组, 35只), NAC干预组(N组, 35只). 所有大鼠实验前均禁食16 h, 自由饮水. A组大鼠分2次腹腔内共注射80 g/L L-Arg溶液2×1.2 mg/g, 中间间隔1 h; C组同法腹腔内注射等量的生理盐水. N组则于L-Arg注射前1 h, 预先腹腔内注射0.5 moI/L的NAC溶液0.05 mg/g, 1 h后按照A组同法腹腔内注射等量的80 g/L L-Arg溶液. 各组实验大鼠在注射80 g/L L-Arg或等量生理盐水后分别于6, 12, 24, 36, 48 h 5个时点分批处死; C组每个时点处死5只大鼠, A组和N组每个时点处死7只大鼠. 解剖大鼠, 取胰头部胰腺组织行组织病理学检查, A组、N组大鼠经大体病理及组织病理检查证实为ANP. 将胰腺组织用滤纸吸干水分, 电子天平称取 200 mg胰腺组织, 剪碎后加入PBS溶液至2 mL, 匀浆机制成100 g/L的胰腺组织匀浆, 4 ℃低温离心, 取上清-20 ℃冰箱保存, 采用L-精氨酸比色法测定iNOS活性. 另切取胰腺组织250-300 mg以同等量冷PBS液中冲洗, 于5 mL冷PBS 中充分剪碎, 经150目的滤网冰上研磨, 收集中层悬液、离心, 弃上清取细胞沉淀. 细胞沉淀于溶解缓冲液(HEPES 100 mmol/L, MgCl2 15 mmol/L, KCl 100 mmol/L, DTT 0.1 mol/L, 蛋白酶抑制物)中冰冻孵育15 min, 离心、再悬浮, 用小27号针头反复吸喷以破碎细胞, 离心破碎的细胞液, 收集核沉淀物. 再于提取缓冲液(HEPES 20 mmol/L, MgCl2 1.5 mmol/L, NaC1 0.42 mol/L, EDTA 0.2 mmol/LM, 甘油, DTT 0.1 mol/L, 蛋白酶抑制物)中悬浮粗制核沉淀物, 注射器反复吸喷以破碎细胞核, 离心核悬浮液, 收集上清液(细胞核提取物), 测量核提取物的蛋白浓度, 小整量分装、快速冷冻(-70 ℃), 采用ELISA法测定 NF-κB浓度.
统计学处理 采用SPSS10.0软件包作统计学处理, 数据以mean±SD表示, 进行方差分析, P<0.05为差异有统计学意义.
经NAC预处理的大鼠胰腺腺泡细胞核内NF-κB浓度显著下降(表1).
在实验性AP的发生早期有NF-κB的激活, 在实验性AP模型的发生中起着重要的作用[18-19]. NF-κB是最近发现的极重要的基因转录调控因子, 他是一种具有多向转录调节作用的核蛋白. NF-κB几乎存在于所有细胞中; 但通常情况下, NF-κB与抑制性抗核因子-B (IB)共价结合成复合物, 以无活性形式存在于细胞质内. NF-κB的活化可诱导前炎症因子iNOS的过度表达, iNOS的大量表达参与AP的发生、发展, 加重了AP时对胰腺组织的损害[14-15]. 我们发现ANP大鼠细胞核内NF-κB浓度在6 h即有明显升高, 6 h后呈现急剧下降, 12 h降至较低水平, 24 h有所回升并呈现第二峰值, 以后时点呈缓慢下降趋势, 支持AP早期有NF-κB的激活. 使用NAC后NF-κB的活性明显降低, 提示NAC可抑制NF-κB的活性. 其作用机制尚不十分明确, 推测可能是: NAC是一含巯基(-SH)物质, 是体内游离巯基的重要组成部分之一. NAC进入体内迅速脱去乙酰基变为左旋半胱氨酸, 捕捉未配对电子, 阻止急性胰腺炎胰腺缺血再灌注时中性粒细胞氧自由基的瞬间爆发. 同时NAC可直接作用于过氧化氢(H2O2)生成H2O和O2, 还可清除超氧阴离子、羟自由基[20]. 此外, NAC为小分子物质, 进入细胞后可为谷胱甘肽(GSH)的合成提供原料. GSH 对稳定细胞膜及细胞器膜, 稳定细胞内酶和蛋白质的功能具有重要作用; 能解除病理状态下蛋白质分子二硫键交联, 利用巯基灭活活性氧. NAC可能通过其抗氧化和细胞保护作用, 抑制NF-κB的激活[21].
我们发现经NAC预处理的大鼠胰腺组织iNOS的含量显著下降, 可能是NAC通过抑制NF-κB激活, 从而抑制了胰腺组织iNOS表达的结果. iNOS在正常生理条件下并不表达, 只有在炎症等病理条件下细胞受到多种刺激物如脂多糖(LPS)、肿瘤坏死因子-(TNF-)、干扰素、白介素-1(IL-1)等刺激诱导下, 启动定位于第17对常染色体上的II型iNOS基因转录合成[22-23]; 但iNOS的转录合成还受到NF-κB 的调控[24-25]; iNOS表达的调控主要发生在转录水平, iNOS基因的启动子区域含有多个转录因子的结合位点包括NF-κB[26-27], 要诱导iNOS的表达, 必须有NF-κB的激活[28-29]. 本研究发现, C组各时点胰腺腺泡核内NF-κB浓度无明显升高, 各时点胰腺组织匀浆iNOS活性均未能检出; A组NF-κB浓度急剧升高后, iNOS活性也明显升高. 应用抗氧化剂NAC后, NF-κB浓度明显下降, iNOS的活性也降低, 与文献[17,30]报道基本一致; 提示NAC通过抑制NF-κB的激活而有效抑制iNOS的表达, 因此, 抗氧化剂可能成为急性胰腺炎治疗中具有应用前景的一类药物.
编辑: N/A
1. | Liu TH, Kwong KL, Tamm EP, Gill BS, Brown SD, Mercer DW. Acute pancreatitis in intensive care unit patients: value of clinical and radiologic prognosticators at predicting clinical course and outcome. Crit Care Med. 2003;31:1026-1030. [PubMed] [DOI] |
2. | Slavin J, Ghaneh P, Sutton R, Hartley M, Rowlands P, Garvey C, Hughes M, Neoptolemos J. Management of necrotizing pancreatitis. World J Gastroenterol. 2001;7:476-481. [PubMed] [DOI] |
3. | Halonen KI, Pettilä V, Leppäniemi AK, Kemppainen EA, Puolakkainen PA, Haapiainen RK. Multiple organ dysfunction associated with severe acute pancreatitis. Crit Care Med. 2002;30:1274-1279. [PubMed] [DOI] |
4. | Mao EQ, Tang YQ, Zhang SD. Effects of time interval for hemofiltration on the prognosis of severe acute pancreatitis. World J Gastroenterol. 2003;9:373-376. [PubMed] [DOI] |
5. | Zhang WZ, Han TQ, Tang YQ, Zhang SD. Rapid detection of sepsis complicating acute necrotizing pancreatitis using polymerase chain reaction. World J Gastroenterol. 2001;7:289-292. [PubMed] [DOI] |
6. | Chen QP. Enteral nutrition and acute pancreatitis. World J Gastroenterol. 2001;7:185-192. [PubMed] [DOI] |
7. | Bhansali SK, Shah SC, Desai SB, Sunawala JD. Infected necrosis complicating acute pancreatitis: experience with 131 cases. Indian J Gastroenterol. 2003;22:7-10. [PubMed] |
9. | 夏 时海, 全 金梅, 乔 爱军, 张 伟龙, 任 万英, 郭 萍, 赵 晓晏. 生长抑素衍生物善宁加倍剂量治疗重症急性胰腺炎的疗效研究. 世界华人消化杂志. 2002;10:1157-1161. [DOI] |
10. | Wang H, Li WQ, Zhou W, Li N, Li JS. Clinical effects of continuous high volume hemofiltration on severe acute pancreatitis complicated with multiple organ dysfunction syndrome. World J Gastroenterol. 2003;9:2096-2099. [PubMed] [DOI] |
11. | Zhou ZG, Chen YD, Sun W, Chen Z. Pancreatic microcirculatory impairment in experimental acute pancreatitis in rats. World J Gastroenterol. 2002;8:933-936. [PubMed] [DOI] |
14. | Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Centorrino T, Ciccolo A, Van de Loo FA, Britti D, Caputi AP, Thiemermann C. Inducible nitric oxide synthase-deficient mice exhibit resistance to the acute pancreatitis induced by cerulein. Shock. 2002;17:416-422. [PubMed] [DOI] |
15. | Ayub K, Serracino-Inglott F, Williamson RC, Mathie RT. Expression of inducible nitric oxide synthase contributes to the development of pancreatitis following pancreatic ischaemia and reperfusion. Br J Surg. 2001;88:1189-1193. [PubMed] [DOI] |
16. | Ma L, Qian S, Liang X, Wang L, Woodward JE, Giannoukakis N, Robbins PD, Bertera S, Trucco M, Fung JJ. Prevention of diabetes in NOD mice by administration of dendritic cells deficient in nuclear transcription factor-kappaB activity. Diabetes. 2003;52:1976-1985. [PubMed] [DOI] |
17. | Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Ciccolo A, Centorrino T, De Sarro A, Caputi AP. Protective effects of n-acetylcysteine on lung injury and red blood cell modification induced by carrageenan in the rat. FASEB J. 2001;15:1187-1200. [PubMed] [DOI] |
18. | Vaquero E, Gukovsky I, Zaninovic V, Gukovskaya AS, Pandol SJ. Localized pancreatic NF-kappaB activation and inflammatory response in taurocholate-induced pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2001;280:G1197-G1208. [PubMed] |
19. | Telek G, Ducroc R, Scoazec JY, Pasquier C, Feldmann G, Rozé C. Differential upregulation of cellular adhesion molecules at the sites of oxidative stress in experimental acute pancreatitis. J Surg Res. 2001;96:56-67. [PubMed] [DOI] |
21. | Li J, Quan N, Bray TM. Supplementation of N-acetylcysteine normalizes lipopolysaccharide-induced nuclear factor kappaB activation and proinflammatory cytokine production during early rehabilitation of protein malnourished mice. J Nutr. 2002;132:3286-3292. [PubMed] |
22. | Pearse DD, Chatzipanteli K, Marcillo AE, Bunge MB, Dietrich WD. Comparison of INOS inhibition by antisense and pharmacological inhibitors after spinal cord injury. J Neuropathol Experimental Neurol. 2003;62:1096. [DOI] |
23. | Marsden PA, Heng HH, Duff CL, Shi XM, Tsui LC, Hall AV. Localization of the human gene for inducible nitric oxide synthase (NOS2) to chromosome 17q11.2-q12. Genomics. 1994;19:183-185. [PubMed] [DOI] |
24. | Azevedo-Martins AK, Lortz S, Lenzen S, Curi R, Eizirik DL, Tiedge M. Improvement of the mitochondrial antioxidant defense status prevents cytokine-induced nuclear factor-kappaB activation in insulin-producing cells. Diabetes. 2003;52:93-101. [PubMed] [DOI] |
25. | Korhonen R, Korpela R, Moilanen E. Signalling mechanisms involved in the induction of inducible nitric oxide synthase by Lactobacillus rhamnosus GG, endotoxin, and lipoteichoic acid. Inflammation. 2002;26:207-214. [PubMed] [DOI] |
26. | Tran VV, Chen G, Newgard CB, Hohmeier HE. Discrete and complementary mechanisms of protection of beta-cells against cytokine-induced and oxidative damage achieved by bcl-2 overexpression and a cytokine selection strategy. Diabetes. 2003;52:1423-1432. [PubMed] [DOI] |
27. | Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuclear factor-kappaB in mouse macrophages. Carcinogenesis. 2002;23:983-991. [PubMed] [DOI] |
28. | Heimberg H, Heremans Y, Jobin C, Leemans R, Cardozo AK, Darville M, Eizirik DL. Inhibition of cytokine-induced NF-kappaB activation by adenovirus-mediated expression of a NF-kappaB super-repressor prevents beta-cell apoptosis. Diabetes. 2001;50:2219-2224. [PubMed] [DOI] |
29. | Zhang H, Snead C, Catravas JD. Nitric oxide differentially regulates induction of type II nitric oxide synthase in rat vascular smooth muscle cells versus macrophages. Arterioscler Thromb Vasc Biol. 2001;21:529-535. [PubMed] [DOI] |