修回日期: 2003-08-25
接受日期: 2003-09-18
在线出版日期: 2004-02-15
肝素酶(hpa)是裂解硫酸乙酰肝素蛋白多糖的惟一酶类, 能破坏细胞外基质及基底膜, 并参与肿瘤血管生成, 与肿瘤的侵袭转移密切相关. hpa也由此逐渐成为引人注目的抗肿瘤治疗新靶点, 其抑制剂的研制可望为抗肿瘤治疗开辟新的途径. 本文综述了hpa的结构与功能, 对肿瘤转移的促进作用与机制, 以及hpa抑制剂作为抗肿瘤新药的最新研究进展.
引文著录: 陈陵, 杨仕明, 房殿春, 王东旭. 肝素酶: 抗肿瘤转移的新靶点. 世界华人消化杂志 2004; 12(2): 439-442
Revised: August 25, 2003
Accepted: September 18, 2003
Published online: February 15, 2004
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12(2): 439-442
- URL: https://www.wjgnet.com/1009-3079/full/v12/i2/439.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i2.439
许多恶性肿瘤早期并无症状, 但在发生转移后, 病情将迅速进展, 预后很差. 而肿瘤的转移要求必须同时破坏构成细胞外基质(extracellular matrix, ECM)的两种主要成分: 结构蛋白和蛋白多糖. 在过去的10多年中, 研究兴趣大多集中在以结构蛋白为底物的基质金属蛋白酶 (matrix metalloproteinases, MMPs)上, 但后来发现MMPs至少有17种[1], 所有MMPs合起来几乎能够降解所有的细胞外基质的结构蛋白成分, 对其中一个酶的抑制会有代偿的途径进行弥补, 这样以结构蛋白为底物的蛋白酶的抑制剂就很难在抗肿瘤转移中发挥很好的作用. 而近年来发现的肝素酶(heparanase, hpa)是惟一能裂解ECM内蛋白多糖主要成分硫酸乙酰肝素蛋白多糖(heparan sulfate proteoglycans, HSPG)的内源性糖苷内切酶. 抑制hpa后可明显减少肿瘤细胞的扩散与转移[2-4], 故hpa作为抗肿瘤治疗新靶点具有很好的应用前景.
hpa基因位于染色体4q22, 基因全长50 kb, 内含14个外显子和13个内含子, 转录两种mRNA, 一种为5 kb大小的hpa-1a型, 另一种为1.7 kb大小的hpa-1b型[5]. 在免疫系统, 如脾及外周血白细胞内, hpa基因主要转录前者; 而在胎盘, 血小板及W138/VA13细胞系, 则主要转录后者[6]. 两种mRNA亚型均含有相同的开放读码框架, 编码含有543个氨基酸(aa) 的hpa蛋白前体, Mr 61 192.
hpa蛋白前体共有6个糖基化位点, 经糖基化后形成65 kD的前hpa. 其上有 2个疏水区和1个亲水区. 其亲水性最强点位于N端第160 aa附近, 使这一区域易于暴露, 便于被蛋白酶在N端Glu157-Lys158处水解. 被切除的N端157 aa经加工后, 形成74 aa (Gln36-Glu109) 组成的8 kD片段, 此片段再与被切除的C端386 aa (Lys158-Ile543)组成的 50 kD的片段通过非共价连接, 组成异二聚体, 即成熟的hpa[4,6-8].
在正常情况下, hpa分布于胸腺、脾脏、淋巴结、骨髓、血小板、中性粒细胞、T淋巴细胞、B淋巴细胞等免疫组织及胎盘中, 此外, 胎肝中也有分布. 以外周白细胞表达水平最高, 其次为胎盘. 除胎盘外的非免疫组织中未见或极少表达[4,6,9-12]. 其生理功能有: (1)帮助胚泡附着于子宫内膜, 促进胎盘的发育和功能形成过程. (2)在组织损伤或炎症时, hpa可降解基底膜HSPG, 帮助免疫细胞渗出到无血管区, 加快创面愈合, 帮助组织修复[12].
晚近, McKenzie et al[11]克隆了一种新的人类cDNA, 即hpa-2, 与hpa-1有很高的同源性. 基因定位于10q23-24, 能编码三种新的肝素酶蛋白(hpa-2a, b, c), 分别含480, 534和592 aa. hpa -2分布于脑, 乳腺, 前列腺, 小肠, 睾丸与子宫. 目前对其功能尚不清楚. 该小组正准备在哺乳动物体内过度表达hpa-2来研究其功能, 以确定hpa-2是否也象hpa-1一样, 能够裂解HSPG.
已有大量实验证明了hpa对肿瘤扩散及转移的促进作用. 研究人员对多种肿瘤(胃癌[13-14], 肝癌[15-16], 胰腺癌[17-19], 结肠癌[20], 乳腺癌[4,6,21], 卵巢癌[22], 血液系肿瘤[23], 前列腺癌[24], 膀胱癌[25-26], 淋巴瘤及黑色素瘤[27-28], 口腔鳞状细胞癌[29], 嗜铬细胞瘤[30])采用RT-PCR或原位杂交技术检验肿瘤细胞内hpa mRNA表达水平, 或用免疫组化荧光染色技术检验hpa蛋白含量, 均发现恶性程度越高, 转移潜能越大, 生长速度越快的肿瘤细胞hpa的表达水平越高, 而良性肿瘤则低水平表达, 正常组织则不表达. 进一步研究发现, 通过载体对无转移潜能的小鼠淋巴瘤细胞系Eb和低转移潜能的黑色素瘤细胞系导入hpa cDNA并形成能够高水平表达hpa的稳定克隆后, 这些肿瘤细胞获得了高转移潜能, 接种到裸鼠肝脏后, 转移能力及致死能力均明显升高[27-28]. 这表明低转移潜能的肿瘤细胞可通过导入hpa cDNA获得高转移潜能; 具有高转移潜能的肿瘤或细胞系应用hpa抑制剂后, 肿瘤细胞转移的数量和部位均明显减少[31-33]. 进一步证明了hpa具有促进肿瘤细胞转移的作用. 其机制有如下几点: (1)促进血管生成: 新生血管的形成为肿瘤的生长转移提供了必需的营养物质和通道. hpa通过直接和间接两种方式发挥促血管生成作用[34]. 直接作用于内皮细胞以生芽方式促进血管生成; β-成纤维细胞生长因子(β-fibroblast growth factor, bFGF)是目前认为极有活性的血管生成因子(angiogenesis factor)之一 [4,6,35], 同时也是强有力的有丝分裂促进因子. 以无活性形式与硫酶乙酰肝素(heparan sulfate, HS)结合贮存于ECM中. hpa裂解HSPG时, bFGF被释放出来, 诱发血管生成. 此外, 被固化在HSPG上无活性的血管内皮生长因子(vascular endothelial growth factor, VEGF)在hpa裂解HSPG的过程中也得到释放并被激活, 与bFGF共同诱导肿瘤血管生成[36]. (2) 破坏限制肿瘤生长转移的屏障ECM与BM: 降解HSPG, 与其他基质降解酶(如MMPs、丝氨酸蛋白酶)协同破坏、降解ECM和BM屏障[27,35]. 促进释放内皮下尿激酶型纤溶酶原激活物(urokinase type-plasminogen activator, u-PA)及组织型纤溶酶原激活物(tissue type-plasminogen activator, t-PA), 激活纤溶酶原, 活化MMPs, 裂解ECM、BM中结构蛋白. t-PA和u-PA还可通过活化表皮生长因子 (epidermic growth factor, EGF), 激活细胞外基质中的蛋白质酶联反应, 使膜的屏障功能减退[37]. (3)介导细胞黏附: 表达于细胞表面的hpa可介导细胞对ECM及BM的黏附, 引起细胞在基质中的扩散以及促进BM的重塑, 帮助肿瘤细胞侵入血管[38]. (4) 增加癌细胞迁移能力: hpa裂解HSPG后产生的HS片段可激活HS的受体CD44v3 (CD44 variant exon 3), 发出细胞内迁移信号, 促使细胞变形, 运动, 从而促进肿瘤细胞的扩散与转移[39]. (5) 抑制活化T淋巴细胞: hpa降解HSPG后的产物可以抑制活化的T淋巴细胞的生物学功能, 从而引起免疫抑制[5,36], 使肿瘤转移更容易.
总之, hpa通过降解ECM和BM中的HSPG, 破坏限制肿瘤转移的屏障, 加强肿瘤细胞的运动能力, 释放促进细胞生长及血管生成的活性因子, 加快血管生成, 促进肿瘤生长和转移, 这是肿瘤进展的重要机制之一.
由于hpa是目前发现惟一的一种能够降解ECM及BM中HSPG的酶类[4], 而肿瘤的转移又必须突破此屏障, 并且hpa在裂解HSPG时还可通过多种途径促进肿瘤的生长、扩散与转移, 故针对hpa的抗肿瘤治疗意义重大. 目前发现的hpa抑制剂有如下几种:
hpa的底物HSPG具有 2个结构特点, 即含硫酸基团和糖链, 并带负电荷, 故凡具备上述特点的生物或化学物质均有可能与HSPG竞争结合hpa, 阻止hpa作用于底物, 抑制其活性. (1)硫酸化磷酸甘露戊糖(phosphomannopentaose sulfate, PI-88): PI-88是含硫酸基的寡糖[32], 从酵母菌发酵而来, 主要成分为甘露五糖和四糖, 2.3 kD, 由五个不同片段组成[40]. PI-88能够将乳腺癌细胞13762MAT注入大鼠后形成的肺癌降低90%, 还能将原发性肿瘤的血管供应降低30%, 同时原发性肿瘤的生长速度降低一半[32]. 在体外实验中, PI-88具有很好的抑制血管生成和抑制hpa活性的作用, 对高浸润性鼠乳腺癌13762MAT细胞抑制率达50%, 腹股沟淋巴结转移率降低40%, 肿瘤周围的血管生成减少达30%[33]. 其副作用主要是可引起免疫介导的剂量限制性的血小板减少症[41]. PI-88已经在志愿者中完成了一期临床试验, 目前, 已在进行多中心临床二期试验[32], 很可能成为第一个应用于临床抗肿瘤治疗的hpa抑制剂. (2)硫酸海带多糖或称昆布多糖(laminarin sulfate, LS): 是含硫酸基的多糖, 在体外实验中可以有效抑制hpa对HSPG的降解, 0.2-1 mg/L即可抑制 50 %的活性. 给小鼠皮下注射LS后再静脉注入黑色素瘤细胞或乳腺癌细胞, 发现对肺扩散转移的抑制达80-90% [31]. (3)苏拉明同功异质体: 苏拉明(suramin)是一种多磺酸萘脲(polysulfonated naphthylurea), 其同功异质体NF127, NF145, NF171在体外实验中能有效地抑制从人高侵袭性黑色素瘤细胞(70W)提取并纯化的hpa活性, 可显著降低70W细胞的侵袭能力, 在动物体内则显著减少肿瘤内新生血管的形成. 在20-30 μmol/L时可抑制hpa 50%的活性, 在100 μmol/L或以上则可100%抑制hpa的活性[42].
以上所提到的LS, 苏拉明, 以及硫酸壳多糖(sulfated chitin)[43], calcium spirulan (Ca-SP) [44], 硫代磷酸寡脱氧核苷酸(phosphorothioate oligodeoxynucleotides, PS oligos) SdC28[31]等, 由于分子大小, 毒性, 多重生物学效应等各种原因, 在发现他们具有抑制hpa表达作用之后不久, 也被发现不适宜应用于临床.
最近, 国内学者张友磊et al[45]报道hpa反义寡脱氧核苷酸(antisense oligodeoxynuleotide, AS-ODN)可与hpa mRNA互补结合, 使其不能翻译hpa蛋白, 从而抑制hpa的表达. AS-ODN的各种浓度组在体外实验中对人乳腺癌MDA435细胞系hpa mRNA和蛋白的表达及细胞侵袭力均有明显抑制作用, 在终浓度为0.1 μmol/L、0.2 μmol/L和0.4 μmol/L时对MDA435细胞的侵袭力抑制率分别为34.0 %、57.8%和79.7%. 其临床应用价值还有待进一步研究.
自从发现hpa在肿瘤转移中的作用来, 其作用机制, 基因序列测定及定位, 蛋白纯化, 单克隆抗体制备等问题逐渐被解决. 目前仍存在的问题是: (1)检测hpa活性可预测肿瘤转移潜能, 判断肿瘤恶性程度[13,15,30], 如联合检测端粒酶, 则可更精确地判断预后[46], 但目前hpa活性的检测方法繁琐, 应用于临床有待进一步努力. (2) hpa与其他肿瘤转移因子或基因间有无联系及如何联系? (3)hpa在生理及病理情况下表达的调控机制及其影响因素是什么?(4) hpa除在高转移性肿瘤中有表达外, 在炎性细胞, 如白细胞中也有表达. hpa在炎细胞中的表达是否与炎细胞的迁移有关, 抑制炎细胞的hpa的表达是否有益于炎症的控制[8,47-48]? (5) hpa在增生的平滑肌细胞中每有表达. 有研究表明, 平滑肌细胞hpa的表达可能与冠心病冠状动脉扩张后再狭窄的发生有关[48-49].
编辑: N/A
1. | Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13:781-792. [PubMed] |
3. | Finkel E. Potential target found for antimetastasis drugs. Science. 1999;285:33-34. [PubMed] [DOI] |
4. | Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med. 1999;5:793-802. [PubMed] [DOI] |
5. | Dong J, Kukula AK, Toyoshima M, Nakajima M. Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene. 2000;253:171-178. [PubMed] [DOI] |
6. | Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med. 1999;5:803-809. [PubMed] [DOI] |
7. | Fairbanks MB, Mildner AM, Leone JW, Cavey GS, Mathews WR, Drong RF, Slightom JL, Bienkowski MJ, Smith CW, Bannow CA. Processing of the human heparanase precursor and evidence that the active enzyme is a heterodimer. J Biol Chem. 1999;274:29587-29590. [PubMed] [DOI] |
8. | McKenzie E, Young K, Hircock M, Bennett J, Bhaman M, Felix R, Turner P, Stamps A, McMillan D, Saville G. Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J. 2003;373:423-435. [PubMed] [DOI] |
9. | Dempsey LA, Brunn GJ, Platt JL. Heparanase, a potential regulator of cell-matrix interactions. Trends Biochem Sic. 2000;25:349351. [DOI] |
10. | Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta. 2001;1471:M99-M108. [PubMed] [DOI] |
11. | McKenzie E, Tyson K, Stamps A, Smith P, Turner P, Barry R, Hircock M, Patel S, Barry E, Stubberfield C. Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun. 2000;276:1170-1177. [PubMed] [DOI] |
12. | Bame KJ. Heparanases: endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology. 2001;11:91R-98R. [PubMed] [DOI] |
13. | Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M. Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab Invest. 2003;83:613-622. [PubMed] [DOI] |
14. | Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K, Nakahara M, Nakao K, Nakamura M, Mori I. Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol. 2002;15:593-598. [PubMed] [DOI] |
15. | 刘 颖斌, 陈 晓鹏, 彭 淑牖, 方 河清, 吴 育连, 彭 承宏, 史 留斌, 白 明东, 许 斌, 王 建伟. 肝细胞性肝癌中乙酰肝素 酶与nm23-H1的表达及其临床意义. 中华医学杂志. 2002;82:1553-1556. |
16. | El-Assal ON, Yamanoi A, Ono T, Kohno H, Nagasue N. The clinicopathological significance of heparanase and basic fibroblast growth factor expressions in hepatocellular carcinoma. Clin Cancer Res. 2001;7:1299-1305. [PubMed] |
17. | Koliopanos A, Friess H, Kleeff J, Shi X, Liao Q, Pecker I, Vlodavsky I, Zimmermann A, Büchler MW. Heparanase expression in primary and metastatic pancreatic cancer. Cancer Res. 2001;61:4655-4659. [PubMed] |
18. | Rohloff J, Zinke J, Schoppmeyer K, Tannapfel A, Witzigmann H, Mössner J, Wittekind C, Caca K. Heparanase expression is a prognostic indicator for postoperative survival in pancreatic adenocarcinoma. Br J Cancer. 2002;86:1270-1275. [PubMed] [DOI] |
19. | Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA. Human heparanase-1 gene expression in pancreatic adenocarcinoma. J Gastrointest Surg. 2002;6:167-172. [PubMed] [DOI] |
20. | Friedmann Y, Vlodavsky I, Aingorn H, Aviv A, Peretz T, Pecker I, Pappo O. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am J Pathol. 2000;157:1167-1175. [PubMed] [DOI] |
21. | Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X. Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery. 2002;132:326-333. [PubMed] [DOI] |
22. | Ginath S, Menczer J, Friedmann Y, Aingorn H, Aviv A, Tajima K, Dantes A, Glezerman M, Vlodavsky I, Amsterdam A. Expression of heparanase, Mdm2, and erbB2 in ovarian cancer. Int J Oncol. 2001;18:1133-1144. [PubMed] [DOI] |
23. | Bitan M, Polliack A, Zecchina G, Nagler A, Friedmann Y, Nadav L, Deutsch V, Pecker I, Eldor A, Vlodavsky I. Heparanase expression in human leukemias is restricted to acute myeloid leukemias. Exp Hematol. 2002;30:34-41. [PubMed] [DOI] |
24. | Kosir MA, Wang W, Zukowski KL, Tromp G, Barber J. Degradation of basement membrane by prostate tumor heparanase. J Surg Res. 1999;81:42-47. [PubMed] [DOI] |
25. | Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M. Heparanase protein and gene expression in bladder cancer. J Urol. 2001;166:1286-1290. [PubMed] [DOI] |
26. | Gohji K, Hirano H, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M. Expression of three extracellular matrix degradative enzymes in bladder cancer. Int J Cancer. 2001;95:295-301. [DOI] |
27. | Pikas DS, Li JP, Vlodavsky I, Lindahl U. Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem. 1998;273:18770-18777. [PubMed] [DOI] |
28. | Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y, Schirrmacher V. Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res. 1983;43:2704-2711. [PubMed] |
29. | Kurokawa H, Katsube K, Podyma KA, Ikuta M, Iseki H, Nakajima M, Akashi T, Omura K, Takagi M, Yanagishita M. Heparanase and tumor invasion patterns in human oral squamous cell carcinoma xenografts. Cancer Sci. 2003;94:277-285. [PubMed] [DOI] |
30. | Quiros RM, Kim AW, Maxhimer J, Gattuso P, Xu X, Prinz RA. Differential heparanase-1 expression in malignant and benign pheochromocytomas. J Surg Res. 2002;108:44-50. [PubMed] [DOI] |
31. | Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA, Vlodavsky I. Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and synthetic phosphorothioate oligodeoxynucleotides. Int J Cancer. 1999;83:424-431. [DOI] |
32. | Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB. Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res. 1999;59:3433-3441. [PubMed] |
33. | Bentolila A, Vlodavsky I, Ishai-Michaeli R, Kovalchuk O, Haloun C, Domb AJ. Poly(N-acryl amino acids): a new class of biologically active polyanions. J Med Chem. 2000;43:2591-2600. [PubMed] [DOI] |
34. | Vlodavsky I, Elkin M, Pappo O, Aingorn H, Atzmon R, Ishai-Michaeli R, Aviv A, Pecker I, Friedmann Y. Mammalian heparanase as mediator of tumor metastasis and angiogenesis. Isr Med Assoc J. 2000;2 Suppl:37-45. [PubMed] |
35. | Marchetti D, Li J, Shen R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res. 2000;60:4767-4770. [PubMed] |
36. | Gohji K, Katsuoka Y, Okamoto M, Kamidono S, Kitazawa S, Toyoshima M, Dong J, Nakajima M. [Human heparanase: roles in invasion and metastasis of cancer]. Hinyokika Kiyo. 2000;46:757-762. [PubMed] |
37. | Pillarisetti S, Paka L, Sasaki A, Vanni-Reyes T, Yin B, Parthasarathy N, Wagner WD, Goldberg IJ. Endothelial cell heparanase modulation of lipoprotein lipase activity. Evidence that heparan sulfate oligosaccharide is an extracellular chaperone. J Biol Chem. 1997;272:15753-15759. [PubMed] [DOI] |
38. | Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J. 2003;17:1015-1025. [PubMed] [DOI] |
39. | Kuniyasu H, Chihara Y, Kubozoe T, Takahashi T. Co-expression of CD44v3 and heparanase is correlated with metastasis of human colon cancer. Int J Mol Med. 2002;10:333-337. [PubMed] [DOI] |
40. | Piccolo P, Iqbal O, Demir M, Ma Q, Gerbutavicius R, Fareed J. Global anticoagulant effects of a novel sulfated pentomanan oligosaccharide mixture. Clin Appl Thromb Hemost. 2001;7:149-152. [PubMed] [DOI] |
41. | Rosenthal MA, Rischin D, McArthur G, Ribbons K, Chong B, Fareed J, Toner G, Green MD, Basser RL. Treatment with the novel anti-angiogenic agent PI-88 is associated with immune-mediated thrombocytopenia. Ann Oncol. 2002;13:770-776. [PubMed] [DOI] |
42. | Marchetti D, Reiland J, Erwin B, Roy M. Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer. 2003;104:167-174. [PubMed] [DOI] |
43. | Saiki I, Murata J, Nakajima M, Tokura S, Azuma I. Inhibition by sulfated chitin derivatives of invasion through extracellular matrix and enzymatic degradation by metastatic melanoma cells. Cancer Res. 1990;50:3631-3637. [PubMed] |
44. | Mishima T, Murata J, Toyoshima M, Fujii H, Nakajima M, Hayashi T, Kato T, Saiki I. Inhibition of tumor invasion and metastasis by calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clin Exp Metastasis. 1998;16:541-550. [PubMed] [DOI] |
47. | Irony-Tur-Sinai M, Vlodavsky I, Ben-Sasson SA, Pinto F, Sicsic C, Brenner T. A synthetic heparin-mimicking polyanionic compound inhibits central nervous system inflammation. J Neurol Sci. 2003;206:49-57. [DOI] |
48. | Benezra M, Ishai-Michaeli R, Ben-Sasson SA, Vlodavsky I. Structure-activity relationships of heparin-mimicking compounds in induction of bFGF release from extracellular matrix and inhibition of smooth muscle cell proliferation and heparanase activity. J Cell Physiol. 2002;192:276-285. [PubMed] [DOI] |
49. | Francis DJ, Parish CR, McGarry M, Santiago FS, Lowe HC, Brown KJ, Bingley JA, Hayward IP, Cowden WB, Campbell JH. Blockade of vascular smooth muscle cell proliferation and intimal thickening after balloon injury by the sulfated oligosaccharide PI-88: phosphomannopentaose sulfate directly binds FGF-2, blocks cellular signaling, and inhibits proliferation. Circ Res. 2003;92:e70-e77. [PubMed] [DOI] |