修回日期: 2003-08-20
接受日期: 2003-10-07
在线出版日期: 2004-02-15
目的: 克隆小鼠甲胎蛋白(mAFP)基因并构建小鼠甲胎蛋白-细胞毒性T淋巴细胞抗原4(mAFP-CTLA4)融合蛋白真核表达载体.
方法: 从Hepa1-6细胞中提取总RNA进行RT-PCR, 扩增出mAFP基因, 亚克隆于pcDNA3.1载体. PCR法从质粒pmCTLA4-Ig中克隆出mCTLA4膜外部分基因并通过重叠PCR法添加接头, 重组连接于pmAFP质粒中mAFP基因后, 转化大肠杆菌DH5α, 筛选阳性克隆酶切、测序鉴定. 用质粒瞬时转染CHO细胞, Western blot检测融合蛋白的表达.
结果: 利用RT-PCR从Hepa1-6细胞总RNA中成功克隆出1.8 kb的mAFP基因; 重组阳性克隆经酶切鉴定证实连有接头的CTLA4膜外部分基因已正确插入pmAFP质粒中, 测序结果证实各片段连接方向及阅读框正确. 用质粒瞬时转染CHO细胞, Western blot检测到预计大小分子量蛋白的表达.
结论: mAFP-CTLA4融合蛋白真核表达载体的构建成功, 为进一步研究其在肝癌免疫治疗中的作用奠定了基础.
引文著录: 田耕, 易继林. 小鼠AFP-CTLA4融合蛋白真核表达载体的构建及鉴定. 世界华人消化杂志 2004; 12(2): 283-285
Revised: August 20, 2003
Accepted: October 7, 2003
Published online: February 15, 2004
AIM: To clone the murine α-fetoprotein gene and to construct the eukaryotic expression vector of AFP-CTLA4 fusion protein.
METHODS: Total RNAs were extracted from Hepa1-6 cells, then the murine α-fetoprotein gene was amplified by RT-PCR and cloned into the eukaryotic expression vector pcDNA3.1. The extramembrane domain of mouse CTLA4 gene was amplified from plasmid pmCTLA4-Ig, followed by the addition of a linker using overlap PCR. The PCR product was subcloned into pmAFP and fused in frame with the AFP. The recombinant of vector was transformed into E. coli. DH5α, the positive clones were selected and the plasmid DNA was identified by restriction enzyme analysis and sequencing. After transient transfection of CHO-K1 cells with the recombinant of vector, Western blotting was used to detect the expression of fusion protein.
RESULTS: The 1.8 kb murine α-fetoprotein gene was successfully cloned from the total RNA of Hepa1-6 cells. The result obtained from the restriction enzyme analysis showed that the extramembrane domain of mouse CTLA4 gene was successfully inserted into pmAFP. Result of sequencing assertained that the orientation of the ligations and the reading frame were correct, and Western blotting indicated that the recombinant of vector could express murine AFP-CTLA4 fusion protein in CHO-K1 cells.
CONCLUSION: We successfully construct eukaryotic expression vector of AFP-CTLA4 fusion protein, which forms an important basis for the research of immunotherapy of hepatocellular carcinoma with pmAFP-CTLA4.
- Citation: Tian G, Yi JL. Construction and identification of the eukaryotic expression vector of murine AFP-CTLA4 fusion protein. Shijie Huaren Xiaohua Zazhi 2004; 12(2): 283-285
- URL: https://www.wjgnet.com/1009-3079/full/v12/i2/283.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v12.i2.283
甲胎蛋白(AFP)能诱导T细胞产生AFP特异性的CTL. 基于AFP的质粒DNA疫苗免疫及转染AFP基因的树突状细胞免疫均在小鼠体内诱导产生了AFP特异性的抗肝癌免疫应答. 但AFP的免疫原性较弱[1-4]. 细胞毒性T淋巴细胞抗原4(CTLA4)与B7-1(CD80)和B7-2(CD86)有很强的结合力, 而B7分子主要表达于APC表面. CTLA4为同源二聚体, 其单体亦能与B7分子结合. 融合蛋白CTLA4-Ig已作为免疫抑制剂用在移植和自身免疫疾病动物模型上. 为了在小鼠肝癌模型上研究通过CTLA4与B7分子结合的途径将AFP靶向送达APC能否增强AFP的免疫原性. 我们构建了编码小鼠AFP和小鼠CTLA4膜外部分融合蛋白的真核表达载体.
小鼠肝癌细胞系Hepa 1-6由第二军医大学王皓博士惠赠; E. coli. DH5α菌种由华中科技大学同济医学院蔡俐琼硕士惠赠, 编码mCTLA4-Ig融合蛋白的质粒pmCTLA4-Ig由华中科技大学同济医学院汪道文教授惠赠, 真核表达载体pcDNA3.1/myc-His购自Invitrogen公司; RT-PCR试剂盒(Ver. 2.1)、Ex Taq高保真Taq酶、限制性内切酶和T4DNA连接酶购自宝生物工程(大连)有限公司; Trizol试剂和RPMI1640为Gibco公司产品、胎牛血清为Hyclone公司产品; 质粒小量制备试剂盒和琼脂糖凝胶核酸纯化回收试剂盒为Omega公司产品. 其余试剂均为国产或进口分析纯试剂.
培养Hepa 1-6细胞至对数期, 收集细胞, 细胞数应在5-10×106, 用Trizol试剂提取细胞总RNA. 为了克隆包括分泌信号在内的AFP全长基因, 设计的引物为P1、P2, P1: 5'-CTCAGGAATTCGCCATGAAGTGGATCACA-3', 在 5'端引入酶切位点Eco RI; P2: 5'-CTCTGCTCTAGATTACTCGAGAACGCCCAAAGCATCACG-3', 在3'端引入酶切位点Xho I和Xba I. 引物由上海博亚生物工程公司合成. 利用RT-PCR试剂盒反转录出cDNA第1链, 引物采用Oligo dT, 条件为: 42 ℃ 30 min, 99 ℃ 5 min, 5 ℃ 5 min. 采用Ex Taq高保真Taq酶进行随后的PCR. PCR条件为: 94 ℃预变性2 min, 94 ℃ 30 s, 60 ℃ 30 s, 72 ℃ 2 min, 30个循环, 末次72 ℃延伸5 min. 取PCR产物3 μL进行琼脂糖凝胶电泳, 观察RT-PCR结果. 为了构建mAFP-mCTLA4融合蛋白的表达载体, 我们采用重叠PCR的方法在mCTLA4膜外部分基因的上游添加了编码GGGGSGGGGS多肽接头的片段, 同时在mCTLA4膜外部分基因的下游添加了终止编码. 方法如下: 以pmCTLA4-Ig为模板, 第1轮扩增mCTLA4膜外部分基因的上、下游引物分别为: 5'-TATGGCGGGGGCTCGATGGAAGCCATACAGGTG-3'和5'-CTCTCTCTCTAGATCAAGAATCCGGGCATGGT-3', 引物由北京赛百盛公司合成. PCR条件为: 95 ℃预变性5 min, 5 ℃ 40 s, 60 ℃ 1 min, 72 ℃ 1 min, 30个循环, 末次72 ℃延伸10 min. 扩增产物经琼脂糖凝胶电泳回收后作为第2轮PCR的模板. 第2轮PCR下游引物不变, 上游引物改为5'-TTATATTCTCGAGGGAGGCGGGGGCTCGGGAGGCGGGGGCTCGATGG-3'. 第1轮上游引物的5'端与第2轮上游引物的3'端有17个核苷酸重叠. PCR条件为: 95 ℃预变性5 min, 95 ℃ 40 s, 60 ℃ 1 min, 72 ℃ 1 min, 30个循环, 末次72 ℃延伸10 min.
1.2.1 重组质粒的构建、酶切和测序: 克隆的小鼠AFP基因经Eco RI和Xba I同时双酶切后, 琼脂糖凝胶电泳回收、纯化; 质粒pcDNA3.1/myc-His同样经Eco RI和Xba I同时双酶切后, 回收纯化. 目的基因与质粒按3: 1的比例混合, 加入T4DNA连接酶进行连接反应(18 ℃, 16 h). 构建的质粒命名为pmAFP. 按同样方法将加有接头的mCTLA4膜外部分基因与pmAFP分别经Xho I和Xba I双酶切后进行连接, 即将连有接头的mCTLA4膜外部分基因的N端与pmAFP 中编码mAFP基因的C端相连, 构建表达mAFP-CTLA4融合蛋白的质粒, 命名为pmAFP-CTLA4(图1). 将上述连接产物转化大肠杆菌DH5α, 涂平板, 氨苄青霉素筛选阳性菌落. 挑取单个菌落培养, 小量质粒制备. pmAFP-CTLA4用Eco RI、Xba I和Xho I进行单酶切或不同组合双酶切鉴定. 酶切鉴定正确的质粒, 挑取相应菌落培养后送上海博亚生物工程公司进行双向全长测序.
1.2.2 瞬时转染及Western Blot检测蛋白表达: 利用脂质体lipofectamine 2000 (Invitrogen)瞬时转染CHO细胞, 按说明书进行操作. 在6孔板中每孔加入5×105个CHO细胞, 24 h后加入分别稀释于Opti-MEM培养基(Invitrogen)质粒4 μg和lipofectamine 200 010 μL, 48 h后提取蛋白. 超声破碎仪粉碎Hepa 1-6细胞, 提取蛋白质作为阳性对照. 蛋白质经电泳后, 半干法转印至硝酸纤维素膜上, 一抗分别为羊抗人AFP多克隆抗体和生物素标记的兔抗小鼠CTLA4 多克隆抗体, 然后分别用HRP标记的抗羊二抗及HRP标记的亲和素孵育, ECL(Pharmacia)显色.
提取的总RNA A260/A280比值为1.885, 表明总RNA较纯. 以Oligo dT反转录的cDNA为模板, 用设计引物进行PCR扩增, 所得特异性条带与预期长度为1.8 kb的目的基因相符(图2). 以pmCTLA4-Ig为模板, 第1轮PCR扩增mCTLA4膜外部分基因得到预期长度的目的基因. 以第1轮PCR产物为模板行重叠PCR得到加有接头的mCTLA4膜外部分基因, 共414个碱基.
质粒带有相应的目的基因. 对重组质粒进行测序, 结果与实验设计完全相符, 连接方向及阅读框正确, 说明本实验已成功构建编码小鼠AFP和小鼠CTLA4膜外部分的融合蛋白的质粒(图3).
AFP作为肝癌的标志物已被广泛用于临床[3-15]. 近年来的研究说明AFP能够作为肝癌免疫治疗的靶的[1-4], 解决了肝癌免疫治疗的第一个障碍-靶的问题. 但是AFP免疫原性较弱, 所诱导的抗肝癌免疫力不强[2-4]. 已有研究发现, 通过基因工程的方法将mCTLA4与自身肿瘤抗原融合, 利用mCTLA4和B7分子的相互作用将抗原直接靶向抗原提呈细胞(APC)能显著提高抗体和T细胞免疫应答[16], 还能诱导产生明显的抗肿瘤免疫[16]. 在本实验中, 我们用PCR法克隆出mCTLA4膜外部分基因并通过重叠PCR法添加接头(添加接头的mCTLA4膜外部分共414个碱基), 并构建了编码小鼠AFP和小鼠CTLA4膜外部分的融合蛋白的质粒pmAFP-CTLA4, 为探讨该质粒在肝癌免疫治疗中的作用奠定了基础.
编辑: N/A
1. | Butterfield LH, Meng WS, Koh A, Vollmer CM, Ribas A, Dissette VB, Faull K, Glaspy JA, McBride WH, Economou JS. T cell responses to HLA-A*0201-restricted peptides derived from human alpha fetoprotein. J Immunol. 2001;166:5300-5308. [PubMed] [DOI] |
2. | Hanke P, Serwe M, Dombrowski F, Sauerbruch T, Caselmann WH. DNA vaccination with AFP-encoding plasmid DNA prevents growth of subcutaneous AFP-expressing tumors and does not interfere with liver regeneration in mice. Cancer Gene Ther. 2002;9:346-355. [PubMed] [DOI] |
3. | Meng WS, Butterfield LH, Ribas A, Dissette VB, Heller JB, Miranda GA, Glaspy JA, McBride WH, Economou JS. alpha-Fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res. 2001;61:8782-8786. [PubMed] |
4. | Grimm CF, Ortmann D, Mohr L, Michalak S, Krohne TU, Meckel S, Eisele S, Encke J, Blum HE, Geissler M. Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice. Gastroenterology. 2000;119:1104-1112. [PubMed] [DOI] |
5. | Tang ZY. Clinical research of hepatocellular carcinoma in the 21st century. China Natl J New Gastroenterol. 1995;1:2-3. |
6. | Wang JH, Lin G, Yan ZP, Wang XL, Cheng JM, Li MQ. Stage II surgical resection of hepatocellular carcinoma after TAE: a report of 38 cases. World J Gastroenterol. 1998;4:133-136. [PubMed] [DOI] |
7. | Wu MC. Clinical research advances in primary liver cancer. World J Gastroenterol. 1998;4:471-474. [PubMed] [DOI] |
8. | Wu ZQ, Fan J, Qiu SJ, Zhou J, Tang ZY. The value of postoperative hepatic regional chemotherapy in prevention of recurrence after radical resection of primary liver cancer. World J Gastroenterol. 2000;6:131-133. [PubMed] [DOI] |