修回日期: 2002-12-20
接受日期: 2002-12-26
在线出版日期: 2003-06-15
为了探讨细胞黏附分子-1(ICAM-1)及Fas在乙型肝炎组织中的表达与肝细胞损伤及凋亡的关系.
方法: 应用免疫组化SP法, 检测106例慢性乙型肝炎, 20例无症状携带者(ASC), 10例正常肝组织标本内ICAM-1及Fas表达情况.
正常人和ASC肝细胞无ICAM-1和Fas表达. CHB106例中, 轻度(G1-2)47例ICAM-1强表达, 占25.5%(12/47); 中重度(G3-4)59例强表达, 占74.5%(44/59). Fas在重度慢性肝炎肝细胞中强表达占91.3%(21/23), 提示中重度慢性肝炎肝细胞表达较轻度慢性肝炎显著增强(P<0.01).肝损害越严重, 坏死越明显, 肝细胞ICAM-1及Fas的表达越强.
乙型肝炎组织中ICAM-1表达有助于淋巴细胞向肝组织内浸润, 与肝细胞损伤有关, 提示Fas在重症肝炎时有介导细胞凋亡的作用.
引文著录: 张闽峰, 郑瑞丹, 孟家榕, 郭以河, 林福地. 乙型肝炎肝组织中细胞间黏附分子-1及Fas的表达及意义. 世界华人消化杂志 2003; 11(6): 871-873
Revised: December 20, 2002
Accepted: December 26, 2002
Published online: June 15, 2003
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11(6): 871-873
- URL: https://www.wjgnet.com/1009-3079/full/v11/i6/871.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v11.i6.871
近年来, ICAM-1在肝内表达以及Fas在重症肝炎发病因素与乙型肝炎发病的关系, 引起人们的广泛关注[1-8].本文观察了ICAM-1及Fas在肝组织中的表达, 并对其表达程度与肝脏炎症活动的关系进行探讨.
106例乙型肝炎标本为1998-2002年本院住院患者肝穿组织. 男性74例, 女性32例, 年龄12-67岁, 平均36岁. 肝炎分型参照2000年肝炎分类方案标准[8]. 106例乙型肝炎根据肝组织病理改变程度分为: (1)轻度慢性肝炎(G1-2)47例; (2)中度慢性肝炎(G3)36例; (3)重度慢性肝炎(G4)23例, 无症状携带者(ASC)20例, 正常对照组10例为本科留档正常肝组织尸检标本. 试剂: 鼠抗人ICAM-1单克隆抗体及Fas单克隆抗体为琛圳晶美公司产品, SP法试剂盒和DAB显色试剂盒为福州迈新生物技术开发公司产品.
免疫组化主要步骤: (1)切片脱蜡至蒸馏水; (2)1 g/L胰蛋白酶消化切片10 min; (3) 30 ml/L H2O2作用5 min; (4)滴加正常血清30 min; (5)滴加一抗4 °C温育过夜; (6)滴加二抗37 °C温箱30 min; (7)滴加LSAB复合物37 °C温箱30 min, 以上各步均以PBS洗; (8)DAB显色、复染、封片.对照设置: (1)实验阳性片为阳性对照; (2)不加一抗为阴性对照.结果判断: 肝细胞膜及肝细胞质有棕黄色颗粒为阳性.染色强度分级: 无着色为(-), 肝细胞着色<25%为(+), 着色25-49%为(++), 着色>50%为(+++).
统计学处理 秩和检验.
慢性乙型肝炎患者肝组织内肝细胞出现不同程度ICAM-1表达. 阳性表达位于肝细胞膜上, 有的伴有胞质着色. 阳性细胞多分布在汇管区周围, 肝小叶内炎细胞浸润区和坏死灶内. 正常人和ASC肝细胞无ICAM-1表达. 根据ICAM-1染色程度及肝脏炎症病理分级可以看出, CHB106例中7例无ICAM-1表达的肝组织均为轻度慢性肝炎, 99例有ICAM-1表达的肝组织随肝脏炎症病理分级的增加而加重, 其中ICAM-1表达呈明显增强趋势(P<0.01, 表1).
炎症分级 | n | ICAM-1 | Fas | ||||||
- | + | ++ | +++ | - | + | ++ | +++ | ||
G1-2 | 47 | 7 | 28 | 10 | 2 | 32 | 13 | 2 | 0 |
G3 | 36 | 0 | 12 | 18 | 6 | 0 | 24 | 12 | 0 |
G4 | 23 | 0 | 3 | 11 | 9 | 0 | 2 | 7 | 14 |
合计 | 106 | 7 | 43 | 39 | 17 | 32 | 39 | 21 | 14 |
CHB106例中阳性细胞主要为肝细胞, 亦有淋巴细胞. 阳性表达位于肝细胞膜上, 部分伴有胞质着色, 阳性细胞主要分布在碎屑样坏死区, 偶在坏死灶边缘. 肝组织中Fas表达的程度与炎症病理分级一致. 正常肝组织和ASC无表达; G1、G2无表达或弱表达, G3、G4随肝脏炎症病理分级加重, 其表达增强. 重度慢性肝炎患者肝组织Fas表达显著强于中、轻度患者(P<0.01, 表1).
在乙型肝炎的发病机制中, 细胞毒T淋巴细胞(CTL)对肝细胞损伤起重要作用, ICAM-1是T细胞与靶细胞有效作用的一种黏附分子[9-11]. ICAM-1表达增强有利于淋巴细胞黏附于血管内皮并向肝组织中浸润, 而淋巴细胞由血管内向组织中浸润是导致乙型肝炎肝组织免疫损伤过程中极其重要的一步. 本组结果显示: 10例正常对照组肝细胞及20例ASC肝细胞均无表达.
CHB106例患者肝组织切片中, 除7例轻度慢性肝炎肝细胞ICAM-1表达阴性外, 其余99例肝细胞有不同程度表达. ICAM-1表达++和+++的56例中44例为中度以上CHB(78.5%); 研究中发现, 肝细胞中ICAM-1表达随着病变程度加重表达增强, 阳性表达多位于汇管区周围、坏死灶区, 常伴有炎细胞浸润, 其结果与国内报道相符[12,13]. 因此, 说明了ICAM-1抗原在肝细胞膜上的表达在介导乙型肝炎肝细胞损伤中起重要作用, 与乙型肝炎发病有关.
乙型肝炎的肝细胞炎症主要是CTL介导的细胞毒效应[14-17]. 也可以是基于Fas凋亡[18,19], Fas是组织细胞表面转导凋亡信号的膜分子, 肝细胞可以被乙型肝炎病毒(HBV)感染激发而强表达[20-22]. 本组结果显示, Fas表达和肝细胞损伤的程度与CHB轻、中、重分型一致. CHB106例G1-2; 47例中无表达或弱表达45例占95.7%, G3的36例中强表达12例占33.3%, G4的23例中强表达21例占91.3%, 本研究发现, 肝组织中重型CHB中Fas表达相当广泛, Fas阳性细胞多在碎屑样坏死区, 与文献中将碎屑样坏死归类于凋亡表现一致[23].
本组结果表明, ICAM-1与Fas的表达多位于汇管区周围及碎屑样坏死区, 符合HBV的传染过程. CTL也可经病毒抗原激活, 凋亡同样开始于汇管区. 研究发现, 乙型肝炎患者肝损害组织坏死越严重, 其肝细胞ICAM-1及Fas的表达越强, 说明二者在介导乙型肝炎肝细胞坏死中均起重要作用[24-26]. 提示ICAM-1与Fas的检测可作为反映肝损害和肝组织炎症坏死程度的指标之一, 为探讨乙型肝炎的免疫发病机制起重要作用.
1. | Rivero M, Crespo J, Fabrega E, Casafont F, Mayorga M, Gomez-Fleitas M, Pons-Romero F. Apoptosis mediated by the Fas system in the fulminant hepatitis by hepatitis B virus. J Viral Hepat. 2002;9:107-113. [PubMed] [DOI] |
2. | Terradillos O, de La Coste A, Pollicino T, Neuveut C, Sitterlin D, Lecoeur H, Gougeon ML, Kahn A, Buendia MA. The hepatitis B virus X protein abrogates Bcl-2-mediated protection against Fas apoptosis in the liver. Oncogene. 2002;21:377-386. [PubMed] [DOI] |
3. | Volpes R, van den Oord JJ, Desmet VJ. Hepatic expression of intercellular adhesion molecule-1 (ICAM-1) in viral hepatitis B. Hepatology. 1990;12:148-154. [PubMed] [DOI] |
4. | Satoh S, Nussler AK, Liu ZZ, Thomson AW. Proinflammatory cytokines and endotoxin stimulate ICAM-1 gene expression and secretion by normal human hepatocytes. Immunology. 1994;82:571-576. [PubMed] |
5. | Doi T, Yamada G, Mizuno M, Tsuji T. Immunohistochemical study of the distribution of intercellular adhesion molecule-1 and lymphocyte function-associated antigen-1 in chronic type B hepatitis. J Gastroenterol. 1994;29:164-171. [PubMed] [DOI] |
6. | Chu CM, Liaw YF. Coexpression of intercellular adhesion molecule-1 and class I major histocompatibility complex antigens on hepatocyte membrane in chronic viral hepatitis. J Clin Pathol. 1993;46:1004-1008. [PubMed] [DOI] |
7. | Fiorucci S, Antonelli E, Mencarelli A, Palazzetti B, Alvarez-Miller L, Muscara M, del Soldato P, Sanpaolo L, Wallace JL, Morelli A. A NO-releasing derivative of acetaminophen spares the liver by acting at several checkpoints in theFas pathway. Br J Pharmacol. 2002;135:589-599. [PubMed] [DOI] |
10. | Garcia-Monzon C, Garcia-Buey L, Garcia-Sanchez A, Pajares JM, Moreno-Otero R. Down-regulation of intercellular adhesion molecule 1 on hepatocytes in viral chronic hepatitis treated with interferon alfa-2b. Gastroenterology. 1993;105:462-469. [DOI] |
11. | Horiike N, Onji M, Kumon I, Kanaoka M, Michitaka K, Ohta Y. Intercellular adhesion molecule-1 expression on the hepatocyte membrane of patients with chronic hepatitis B and C. Liver. 1993;13:10-14. [DOI] |
14. | Lee MO, Choi YH, Shin EC, Kang HJ, Kim YM, Jeong SY, Seong JK, Yu DY, Cho H, Park JH. Hepatitis B virus X protein induced expression of interleukin 18 (IL-18): a potential mechanism for liver injury caused by hepatitis B virus (HBV) infection. J Hepatol. 2002;37:380-386. [DOI] |
15. | Ibuki N, Yamamoto K, Yabushita K, Okano N, Okamoto R, Shimada N, Hakoda T, Mizuno M, Higashi T, Tsuji T. In situ expression of Granzyme B and Fas-ligand in the liver of viral hepatitis. Liver. 2002;22:198-204. [DOI] |
16. | Lee MO, Kang HJ, Cho H, Shin EC, Park JH, Kim SJ. Hepatitis B virus X protein induced expression of the Nur77 gene. Biochem Biophys Res Commun. 2001;288:1162-1168. [PubMed] [DOI] |
17. | Tsai SL. Soluble Fas modulates interferon responsiveness. J Gastroenterol Hepatol. 2001;16:958-959. [DOI] |
19. | Shin EC, Choi YH, Kim JS, Kim SJ, Park JH. Expression patterns of cytokines and chemokines genes in human hepatoma cells. Yonsei Med J. 2002;43:657-664. [PubMed] [DOI] |
20. | Pan J, Duan LX, Sun BS, Feitelson MA. Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-kappa B. J Gen Virol. 2001;82:171-182. [PubMed] [DOI] |
21. | Diao J, Khine AA, Sarangi F, Hsu E, Iorio C, Tibbles LA, Woodgett JR, Penninger J, Richardson CD. X protein of hepatitis B virus inhibits Fas-mediated apoptosis and is associated with up-regulation of the SAPK/JNK pathway. J Biol Chem. 2001;276:8328-8340. [PubMed] [DOI] |
22. | Tagashira M, Yamamoto K, Fujio K, Nagano T, Okamoto R, Ibuki N, Yabushita K, Matsumura S, Okano N, Tsuji T. Expression of perforin and Fas ligand mRNA in the liver of viral hepatitis. J Clin Immunol. 2000;20:347-353. [DOI] |
23. | Patel T, Groes GJ. Apoptosis and hepatobiliary disease. Hepatology. 1995;21:1725-1741. [DOI] |
24. | Lian Z, Liu J, Pan J, Satiroglu Tufan NL, Zhu M, Arbuthnot P, Kew M, Clayton MM, Feitelson MA. A cellular gene up-regulated by hepatitis B virus-encoded X antigen promotes hepatocellular growth and survival. Hepatology. 2001;34:146-57. [PubMed] [DOI] |
25. | Shin EC, Ahn JM, Kim CH, Choi Y, Ahn YS, Kim H, Kim SJ, Park JH. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int J Cancer. 2001;93:262-268. [PubMed] [DOI] |
26. | Liu DX. A new hypothesis of pathogenetic mechanism of viral hepatitis B and C. Med Hypotheses. 2001;56:405-408. [PubMed] [DOI] |