文献综述 Open Access
Copyright ©The Author(s) 2003. Published by Baishideng Publishing Group Inc. All rights reserved.
世界华人消化杂志. 2003-02-15; 11(2): 238-241
在线出版日期: 2003-02-15. doi: 10.11569/wcjd.v11.i2.238
抗乙型肝炎病毒核酶的研究进展
李谨革, 聂青和, 黄长形
李谨革, 聂青和, 黄长形, 中国人民解放军第四军医大学唐都医院全军感染病诊疗中心 陕西省西安市 710038
通讯作者: 李谨革, 710038, 陕西省西安市, 中国人民解放军第四军医大学唐都医院全军感染病诊疗中心. ban211@fmmu.edu.cn
电话: 029-3374311
收稿日期: 2002-11-06
修回日期: 2002-11-12
接受日期: 2002-11-20
在线出版日期: 2003-02-15

全世界大约有3.5亿乙型肝炎病毒(HBV)携带者, 这种感染者集中分布于包括我国在内的东南亚、东亚及非洲的撒哈拉地区. HBV的持续存在常可导致肝硬化以及肝癌, 对于已感染HBV者, 目前常用的化学及免疫疗法通常无效. 因此, 寻找新的抗HBV感染的手段成为热点. 核酶做为一种成熟的、可剪切特异性RNA的分子生物学方法受到广泛重视. 由于核酶有严格的序列特异性, 长期使用对细胞无副作用, 并且结构简单, 可人工设计, 因此, 很有希望成为治疗HBV感染的新方法. 目前, 核酶已广泛用于抗病毒及抗肿瘤的研究, 尤其对HIV的研究, 已进入临床工作阶段. 本文将从核酶的构成、核酶研究的热点以及抗HBV感染等方面进行阐述.

关键词: N/A

引文著录: 李谨革, 聂青和, 黄长形. 抗乙型肝炎病毒核酶的研究进展. 世界华人消化杂志 2003; 11(2): 238-241
N/A
N/A
Correspondence to: N/A
Received: November 6, 2002
Revised: November 12, 2002
Accepted: November 20, 2002
Published online: February 15, 2003

N/A

Key Words: N/A


0 引言

RNA具有酶的活性, 首先是在四膜虫及大肠杆菌RNase P组分研究中发现的. 1981年Cech研究组首先报道了四膜虫rRNA前体的间插序列(IVS)具有催化功能, 他能催化前体自我剪接得到成熟的rRNA, 进而发现, 游离的间插序列又能自我反应产生一个环状分子并释放-寡核苷酸片段, 这些结果证明某些RNA确实具有特异的催化功能. Cech称此具有酶性质的RNA分子为核酶(ribozyme). 到目前为止, 已发现并证实的主要核酶有六大类型, 包括Ⅰ类内含子; RNase P的 RNA亚基; 锤头状核酶; 发夹状核酶, 丁型肝炎病毒核酶和链孢霉线粒体核酶[1-8].

由于人们对核酶的生化及生物学特性有了深一步了解, 核酶具有分子小, 比较容易通过多种途径获得, 如化学合成, 体外转录和体内表达, 所以利用核酶可序列特异性地结合并切割靶RNA的特点, 人们通过合理的化学或分子操作, 便可破坏靶基因的生物学功能. 由于核酶含有较传统药物高得多的信息量、高效无毒, 因此成为抗HBV研究中的一个亮点. 目前已将核酶用于HIV感染的Ⅰ期临床试验, 随着研究的深入, 核酶必将给HBV感染的治疗带来新希望[9-32].

1 核酶发展过程中的热点

核酶最突出的优点在于可选择性地阻断特异基因的表达, 因而成为分子生物学研究中的一种工具, 可能对人类疾病的治疗产生深远的影响. 但在实际研究当中, 发现核酶尚有许多方面有待进一步深入研究. 如何提高其细胞内的稳定性, 提高切割活性, 都是核酶研究当中的热点问题.

1.1 提高核酶的稳定性

由于细胞内含有大量内切核酸酶和外切核酸酶, 使核酶在细胞内很容易被降解. 研究发现核酸酶水解RNA需要借助被切点邻位的2'-OH的参与, 因此目前的很多工作主要是对核酶2'-OH进行修饰, 如2'-脱氧, 2'-氟代, 2'NH2, 2'-O-CO3及2'-O-烯丙基等. 这类修饰物在用核酸酶或细胞粗提液处理时, 其稳定性比原始的核酶高2-3数量级, 其Kcat/Km值降低5-100倍. 有人将锤头型核酶的嘧啶(U4和U7, 除外)的2'-OH用氟取代, 发现其在血清中的降解速率降低了上千倍, 而催化活性并没有太大的改变. Taylor et al用2'-脱氧核糖核苷酸只对核酶的茎区进行修饰, 发现切割活力增加了6倍. 陆长德et al研究表明, 茎区用DNA代替RNA, 可影响切割效率和最适反应温度. Heidenreich et al用脱氧尿嘧啶取代核酶保守区的第4, 7位碱基, 在核酶的末端用四个硫化磷酸二酯键取代磷酸二酯键, 这样的核酶依旧保持有原始的活性, 而且在不稀释小牛血清中可稳定存在至少24 h. 2'-OH的甲基化、烷基化和脱氧都已经成功地用于核苷酸的保护. 因此适当地选择对核酶某些核苷酸的修饰不仅能保留或提高其切割活力, 也能提高其抗核酸酶的能力. 随着核苷酸化学的发展, 为核酶的稳定性和体内应用提供了解决问题的基础[33-42].

1.2 提高核酶的切割效率

具有应用价值的核酶, -般是根据已经知道的核酶的二级结构, 人工设计而成的, 切割效率远远低于天然核酶. 目前借助于现代分子生物学技术, 人们已经能够在离体模拟分子进化, 离体筛选高效核酶. 借助核酶的随机文库反复筛选, 亦可得到高活性的核酶. Beaudry和Toyce对四膜虫Ⅰ型核酶进行了10代突变选择, 结果使核酶剪切活性提高了100倍. Joseph用体外筛选方法对抗HIV的发夹状核酶进行了突变筛选, 结果证明此方法是提高核酶活性的有效方法. 多个核酶的联合切割, 由一组不同特性的核酶组成, 可分别针对靶RNA分子的不同位点, 并在多个不同的位点破坏靶RNA, 从而进一步提高核酶阻断靶基因的效率[43-47], 我们的研究工作也证实了这-点[46].

1.3 核酶的靶细胞导入及活性提高

核酶分子如同药物分子-样, 必须通过物理的或化学的手段直接导入细胞, 方可发生剪切作用. 阳离子脂质体转染试剂已经商品化, 且操作方便, 被广泛用于做导入DNA和RNA的载体. Sioud et al证实用脂质体介导, 每个细胞中可导入30万个核酶分子. 感染的方法也是一种有效的方式, 即将核酶基因构建在合适的表达载体上, 在细胞内表达发挥活性. 目前最常见的是逆转录病毒载体系统, 腺病毒载体及腺相关病毒. 腺病毒载体在细胞中能够高拷贝地自主复制, 并不整合到人的染色体上, 因而得到了人们广泛重视[48-50].

2 核酶在抗人肝炎病毒中的应用

核酶在抗HBV及HCV研究中有着广泛应用. Weinberg et al[51]报道, 用双位点核酶的真核表达载体, 在细胞中表达针对HBV的X基因的核酶, 结果表明不但使HBV X蛋白大为下降, 而且使S抗原亦有下降, 实验中用对照组的办法排除反义核酸的作用. 提示这是一个潜在的治疗慢性肝炎的方法. 韩国学者Yim et al[52]则在研究中发现, 不论是野生型核酶, 还有突变的锤头状结构核酶, 如G5突变为A或U、T突变为G, 都具有同样的核酶功能, 同时他发现锤头样结构不论是三茎环还是两茎环结构, 只要在起始区都可有效抑制转录作用. 同是韩国学者, Kim et al[53]则报道, 使用二个抗HBV X基因锤头结构核酶, 在Hep G2细胞使HBV X mRNA下降40%-57%, 而突变的核酶则无活性. Passman et al[54]报道在乙型肝炎病毒质粒的S区用绿色荧光蛋白来替代, 将抗HBV X基因核酶与其共转染细胞, 通过绿色荧光蛋白直接反应核酶对HBV mRNA的抑制作用, 结果表明, 核酶确是一种非常有效的方法. Putlitz et al[55]则选用随机文库(5×105突变体)寻找合适的靶位点, 在四种亚型中选用的17个保守区域, 使用聚合酶Ⅱ或Ⅲ做启动子来表达发夹状核酶. 与HBV共转染HCC细胞, 四种不同的核酶抑制率可达80%, 69%, 66%及49%, 其无活性的突变体抑制率分别为36%, 28%, 0%, 0%. 他们结果提示, 抑制HBV表达的主要活性来源于核酶. Werner et al[56]则尝试使用RNase P中的13碱基的EGS对HBV的转录进行抑制, 结果提示也是一种可行的方法. 国内亦有报道采用丁肝核酶对HBV表达进行抑制的报道. 本实验室对HBV核酶亦较为深入, 发现在细胞水平、双位点核酶对HBV的抑制率在50%-69%之间[57-59].

Ohkawa在体外研究中, 选择了3个抗HCV C区的锤头状核酶, 证实了三个核酶都可有效剪切病毒的mRNA, 其效率最高的位点最近起始区, 其抑制率可达70%-80%. Macejak et al设计了15个锤头状核酶, 针对HCV的5'UTR区域, 在以荧光素酶为报道基因的细胞研究系统中, 这15个核酶都有抑制活性, 从40%-80%不等, 个别的可达90%以上, 提示这是一个潜在的治疗HCV感染的方法. 国内学者(包括我科)都有类似报道[60-62]. Lee et al[63], 则研究了抗HCV核酶的药代动力学, 用32P标记或罗丹明, 经皮下或静脉, 剂量为10 mg/kg或30 mg/kg, 注射CS781/6小鼠, 研究表明核酶可持续在小鼠肝细胞表达, 支持抗HCV核酶是一种潜在的治疗慢性HCV感染的方法. 国外已有较多报道[64-66].

3 核酶的新特性和展望

通常情况核酸的序列相同的二个RNA分子应该有大致相同的功能及结构. 结果却并非这样, 2000年的《科学》杂志报道: 同-RNA序列有个相反的功能[67]. 研究人员采用了二个具有活性HDV核酶, 一个是具有剪切活性, 另一个则是通过试管进化后具有连接酶活性, 二个序列相同, 作用机制却不同, 进一步研究空间结构的差异, 发现其碱基配对区域不同可能是造成功能相反的根本原因. 因此Schultes和Bartel提出"内插片段"理论. 为验证他们的理论, 他们采用突变的办法, 改变HDV核酶的配对区域, 如果空间结构为Ⅲ型连接核酶则其连接速度提高750倍, 如果为DHDV核酶, 则剪切速度提高70倍.

此外, 人们也发现核酶也有毒性作用, Levitz R在研究抗HIV-1的tat区域核酶时, 采用的是锤头状核酶, 由mRNA文库中筛选出的合适的靶位点. 在研究中发现核酶抑制recA+ recA+ lexA3等细胞生长, 具有明显的细胞毒性作用[68].

目前核酶的体内应用研究已经取得了很大的进展, 但要使核酶真正应用于人类疾病的防治, 仍需得到更多信息. 尽管抗HIV核酶在进行了Ⅰ期临床试验, 但是仍需要人们持之以恒的探索. 相信随着基因疗法的研究进一步深入, 核酶用于临床是可以预见的.

编辑: N/A

1.  Lustig B, Jeang KT. Biological applications of hammerhead ribozymes as anti-viral molecules. Curr Med Chem. 2001;8:1181-1187.  [PubMed]  [DOI]
2.  Düzgünes N, Simões S, Slepushkin V, Pretzer E, Rossi JJ, De Clercq E, Antao VP, Collins ML, de Lima MC. Enhanced inhibition of HIV-1 replication in macrophages by antisense oligonucleotides, ribozymes and acyclic nucleoside phosphonate analogs delivered in pH-sensitive liposomes. Nucleosides Nucleotides Nucleic Acids. 2001;20:515-523.  [PubMed]  [DOI]
3.  Klein SA, Klebba C, Engels JW. An assay system to detect the selective advantage of anti-HIV ribozyme expressing CD4+ T-lymphocytes. Nucleosides Nucleotides Nucleic Acids. 2001;20:629-634.  [PubMed]  [DOI]
4.  Habu Y, Miyano-Kurosaki N, Takeuchi H, Matsumoto N, Tamura Y, Takaku H. Inhibition of HIV-1 replication by the Cre-loxP hammerhead ribozyme. Nucleosides Nucleotides Nucleic Acids. 2001;20:723-726.  [PubMed]  [DOI]
5.  Michienzi A, Rossi JJ. Intracellular applications of ribozymes. Methods Enzymol. 2001;341:581-596.  [PubMed]  [DOI]
6.  Statham S, Morgan RA. Gene therapy clinical trials for HIV. Curr Opin Mol Ther. 1999;1:430-436.  [PubMed]  [DOI]
7.  Rossi JJ. The application of ribozymes to HIV infection. Curr Opin Mol Ther. 1999;1:316-322.  [PubMed]  [DOI]
8.  Feldman AR, Sen D. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J Mol Biol. 2001;313:283-294.  [PubMed]  [DOI]
9.  Ramezani A, Ma XZ, Nazari R, Joshi S. Development and testing of retroviral vectors expressing multimeric hammerhead ribozymes targeted against all major clades of HIV-1. Front Biosci. 2002;7:a29-a36.  [PubMed]  [DOI]
10.  Eubank TD, Biswas R, Jovanovic M, Litovchick A, Lapidot A, Gopalan V. Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates. FEBS Lett. 2002;511:107-112.  [PubMed]  [DOI]
11.  Hnatyszyn H, Spruill G, Young A, Seivright R, Kraus G. Long-term RNase P-mediated inhibition of HIV-1 replication and pathogenesis. Gene Ther. 2001;8:1863-1871.  [PubMed]  [DOI]
12.  Kraus G, Geffin R, Spruill G, Young AK, Seivright R, Cardona D, Burzawa J, Hnatyszyn HJ. Cross-clade inhibition of HIV-1 replication and cytopathology by using RNase P-associated external guide sequences. Proc Natl Acad Sci USA. 2002;99:3406-3411.  [PubMed]  [DOI]
13.  Wang DY, Sen D. Rationally designed allosteric variants of hammerhead ribozymes responsive to the HIV-1 Tat protein. Comb Chem High Throughput Screen. 2002;5:301-312.  [PubMed]  [DOI]
14.  Mautino MR. Lentiviral vectors for gene therapy of HIV-1 infection. Curr Gene Ther. 2002;2:23-43.  [PubMed]  [DOI]
15.  Werner M, Rosa E, George ST. Design of short external guide sequences (EGSs) for cleavage of target molecules with RNase P. Nucleic Acids Symp Ser. 1997;19-21.  [PubMed]  [DOI]
16.  Karayiannis P. Hepatitis D virus. Rev Med Virol. 1998;8:13-24.  [PubMed]  [DOI]
17.  Yim SH, Park I, Ahn JK, Kang C. Translational suppression by hammerhead ribozymes and inactive variants in S Cerevisiae. Biomol Eng. 2000;16:183-189.  [PubMed]  [DOI]
18.  Pan WH, Devlin HF, Kelley C, Isom HC, Clawson GA. A selection system for identifying accessible sites in target RNAs. RNA. 2001;7:610-621.  [PubMed]  [DOI]
19.  Joyce GF. RNA structure. Ribozyme evolution at the crossroads [comment]. Science. 2000;289:444-448.  [PubMed]  [DOI]
20.  Rabe C, Pilz T, Klostermann C, Berna M, Schild HH, Sauerbruch T, Caselmann WH. Clinical characteristics and outcome of a cohort of 101 patients with hepatocellular carcinoma. World J Gastroenterol. 2001;7:208-215.  [PubMed]  [DOI]
21.  Zhuang L, You J, Tang BZ, Ding SY, Yan KH, Peng D, Zhang YM, Zhang L. Preliminary results of Thymosin-a1 versus interferon-alpha-treatment in patients with HBeAg negative and serum HBV DNA positive chronic hepatitis B. World J Gastroenterol. 2001;7:407-410.  [PubMed]  [DOI]
22.  Li JG, Zhou YX, Lian JQ. Intracellular applicaton of two-unit ribozyme gene against hepatitis B virus. Zhonghua Neike Zazhi. 2000;39; 27-30.  [PubMed]  [DOI]
23.  Shan Y, Xiong SS, Liu X, Zhao M, Ba QJ, Zhou LJ. Comparison of human leukocyte interferon and recombinant interferon alpha 1 in the treatment of chronic hepatitis B. Xin Xiaohuabingxue Zazhi. 1996;4:40-41.  [PubMed]  [DOI]
24.  Liu WE, Tan DM, Fan XG, Ouyang K, Zhang Z. Role of autoimmune reaction in pathogenesis of patients with chronic HCV infection. Shijie Huaren Xiaohua Zazhi. 1999;7:120-121.  [PubMed]  [DOI]
25.  Xie Q, Guo Q, Zhou XQ, Gu RY. Effect of adenine arabinoside monophosphate coupled to lactosaminated human serum albumin on duck hepatitis B virus. Shijie Huaren Xiaohua Zazhi. 1999;7:125-126.  [PubMed]  [DOI]
26.  Xu KC, Wei BH, Yao XX, Zhang WD. Recent therapy for chronic hepatitis B by combined traditional Chinese and Western medicine. Shijie Huaren Xiaohua Zazhi. 1999;7:970-974.  [PubMed]  [DOI]
27.  Pan X, Ke CW, Pan W, Wu WB, Zhang B, He X, Cao GW, Qi ZT. Construction of eukaryotic expression vector carrying IFN-gene under control of human HBV promoter. Shijie Huaren Xiaohua Zazhi. 2000;8:520-523.  [PubMed]  [DOI]
28.  Worman HJ, Feng L, Mamiya N. Molecular biology and the diagnosis and treatment of liver diseases. World J Gastroenterol. 1998;4:185-191.  [PubMed]  [DOI]
29.  Zhoug S, Wen SM, Zhang DF, Wang QL, Wang SQ, Ren H. Sequencing of PCR amplified HBV DNA pre-c and c regions in the 2.2.15 cells and antiviral action by targeted antisense oligonucleotide directed against sequence. World J Gastroenterol. 1998;4:434-436.  [PubMed]  [DOI]
30.  Yang SM, Zhou H, Chen RC, Wang YF, Chen F, Zhang CG, Zhen Y, Yan JH, Su JH. Sequencing of p53 mutation in established human hepatocellular carcinoma cell line of HHC4 and HHC15 in nude mice. World J Gastroenterol. 1998;4:506-510.  [PubMed]  [DOI]
31.  Shi JJ, Miao F, Liu FL. Therapeutic effect of medicinal herbs and western drugs on hepatitis B virus. World J Gastroenterol. 1998;4:61-62.  [PubMed]  [DOI]
32.  Qiu AG, Qiu RB, Miao Y, Fu ZL, Zhang YR, Zheng YQ, Hong YS, Wu BS, Jiang YP, Qian CF. Clinical study on therapeutic effect of three cycle natural therapy on chronic hepatitis B and C. World J Gastroenterol. 1998;4:82.  [PubMed]  [DOI]
33.  Zhu Y, Wang YL, Shi L. Clinical analysis of the efficacy of interferon alpha treatment of hepatitis. World J Gastroenterol. 1998;4:85-86.  [PubMed]  [DOI]
34.  Wang Y, Liu H, Zhou Q, Li X. Analysis of point mutation in site 1896 of HBV precore and its detection in the tissues and serum of HCC patients. World J Gastroenterol. 2000;6:395-397.  [PubMed]  [DOI]
35.  Ma CH, Sun WS, Zhang LN, Ding PF. Inhibitory effect of antisense oligodeoxynucleotides complementary to HBV on HepG2.2.15 cell line. World J Gastroenterol. 2000;6:72.  [PubMed]  [DOI]
36.  Gao XW, Jia SY, Liu XM. BCG vaccine combined with dipyridamole in the treatment of HBV infection. World J Gastroenterol. 2000;6:76.  [PubMed]  [DOI]
37.  Bo AH, Tian CS, Xue GP, Du JH, Xu YL. Morphology of immune and alcoholic liver diseases in rats. Shijie Huaren Xiaohua Zazhi. 2001;9:157-160.  [PubMed]  [DOI]
38.  Hao CQ, Zhou YX, Feng ZH, Li JG, Jia ZS, Wang PZ. Construction, identification and expression of framework plasmid pAd. HCV-C of adenovirus expression vector of HCV C. Shijie Huaren Xiaohua Zazhi. 2001;9:635-639.  [PubMed]  [DOI]
39.  Tu SP, Wu YL, Sun J, He Q, Ke YM, Fu H, Yuan YZ, Jiang SH. Disinfecting effect of electrolyzed acid water on gastroendos-cope. Shijie Huaren Xiaohua Zazhi. 2001;9:874-876.  [PubMed]  [DOI]
40.  Tang ZY. Hepatocellular carcinoma--cause, treatment and metastasis. World J Gastroenterol. 2001;7:445-454.  [PubMed]  [DOI]
41.  Ghaneh P, Slavin J, Sutton R, Hartley M, Neoptolemos JP. Adjuvant therapy in pancreatic cancer. World J Gastroenterol. 2001;7:482-489.  [PubMed]  [DOI]
42.  Spangenberg HC, Wands JR. Ribozymes and hepatitis B virus. J Gastroenterol Hepatol. 2001;16:1084-1085.  [PubMed]  [DOI]
43.  Feng Y, Kong Y, Wang Y, Qi G. Antiviral Activity of a Hammerhead Ribozyme against HBV in HepG2.2.15 Cells. Shengwuhuaxue Yu Shengwuwuli Xuebao (Shanghai). 2002;34:204-208.  [PubMed]  [DOI]
44.  Weinberg M, Passman M, Kew M, Arbuthnot P. Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells. J Hepatol. 2000;33:142-151.  [PubMed]  [DOI]
45.  Li JG, Zhou YX, Lian JQ, Jia ZS, Feng ZH. Inhibitory effect of ribozyme on HBeAg in human HCC cells. Shijie Huaren Xiaohua Zazhi. 1999;7:28-30.  [PubMed]  [DOI]
46.  Zheng WC, Lu CD, Kong YY, Wang Y, Qi GR. Hammerhead Ribozymes Suppress HBV(adr) in HepG2 Cells. Shengwuhuaxue Yu Shengwuwuli Xuebao (Shanghai). 2001;33:25-29.  [PubMed]  [DOI]
47.  Song YH, Lin JS, Liu NZ, Kong XJ, Xie N, Wang NX, Jin YX, Liang KH. Anti-HBV hairpin ribozyme-mediated cleavage of target RNA in vitro. World J Gastroenterol. 2002;8:91-94.  [PubMed]  [DOI]
48.  Wen SJ, Xiang KJ, Huang ZH, Zhou R, Qi XZ. Construction of HBV-specific ribozyme and its recombinant with HDV and their cleavage activity in vitro. World J Gastroenterol. 2000;6:377-380.  [PubMed]  [DOI]
49.  Feng Y, Kong YY, Wang Y, Qi GR. Intracellular inhibition of the replication of hepatitis B virus by hammerhead ribozymes. J Gastroenterol Hepatol. 2001;16:1125-1130.  [PubMed]  [DOI]
50.  Feng Y, Kong YY, Wang Y, Qi GR. Inhibition of hepatitis B virus by hammerhead ribozyme targeted to the poly(A) signal sequence in cultured cells. Biol Chem. 2001;382:655-660.  [PubMed]  [DOI]
51.  Weinberg M, Passman M, Kew M, Arbuthnot P. Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells. J Hepatol. 2000;33:142-151.  [PubMed]  [DOI]
52.  Yim SH, Park I, Ahn JK, Kang C. Translational suppression by hammerhead ribozymes and inactive variants in S. cerevisiae. Biomol Eng. 2000;16:183-189.  [PubMed]  [DOI]
53.  Kim YK, Junn E, Park I, Lee Y, Kang C, Ahn JK. Repression of hepatitis B virus X gene expression by hammerhead ribozymes. Biochem Biophys Res Commun. 1999;257:759-765.  [PubMed]  [DOI]
54.  Passman M, Weinberg M, Kew M, Arbuthnot P. In situ demonstration of inhibitory effects of hammerhead ribozymes that are targeted to the hepatitis Bx sequence in cultured cells. Biochem Biophys Res Commun. 2000;268:728-733.  [PubMed]  [DOI]
55.  zu Putlitz J, Yu Q, Burke JM, Wands JR. Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. J Virol. 1999;73:5381-5387.  [PubMed]  [DOI]
56.  Werner M, Rosa E, Al Emran O, Goldberg AR, George ST. Targeted cleavage of RNA molecules by human RNase P using minimized external guide sequences. Antisense Nucleic Acid Drug Dev. 1999;9:81-88.  [PubMed]  [DOI]
57.  李 谨革, 周 永兴, 连 建奇. 核酶对乙肝病毒细胞内抑制作用. 中华内科杂志. 2000;39:27-31.  [PubMed]  [DOI]
58.  李 谨革, 周 永兴, 连 建奇. 核酶对细胞内HBeAg表达抑制作用的共聚焦定量分析. 中华传染病杂志. 1999;17:152-155.  [PubMed]  [DOI]
59.  李 谨革, 周 永兴, 连 建奇. 双位点核酶对2.2.15细胞内HBeAg表达抑制作用. 中华肝脏病杂志. 1999;7:181.  [PubMed]  [DOI]
60.  连 建奇, 周 永兴, 金 由辛. 双位点核酶对HBVC基因的体外剪切作用. 生物物理与生物化学进展. 1999;26:566-569.  [PubMed]  [DOI]
61.  贾 战生, 周 永兴, 连 建奇, 冯 志华, 李 谨革, 焦 成松, 李 光玉, 张 文斌. 锤头结构核酶在人肝癌细胞内对丙型肝炎病毒基因表达的抑制作用. 中华医学杂志. 1999;79:631-632.  [PubMed]  [DOI]
62.  贾 战生, 周 永兴, 连 建奇, 冯 志华, 李 谨革, 焦 成松, 李 光玉, 张 文斌. 抗HCV5'非编码区核酶对病毒基因表达翻译启动的抑制作用. 中华传染杂志. 2000;18:10-12.  [PubMed]  [DOI]
63.  Lee PA, Blatt LM, Blanchard KS, Bouhana KS, Pavco PA, Bellon L, Sandberg JA. Pharmacokinetics and tissue distribution of a ribozyme directed against hepatitis C virus RNA following subcutaneous or intravenous administration in mice. Hepatology. 2000;32:640-646.  [PubMed]  [DOI]
64.  Wen S, Qi X, Zhou R. Study of transcription and cleavage in vitro of HDV with HBV-specific hammerhead ribozyme. Zhonghua Ganzangbing Zazhi. 1999;7:11-12.  [PubMed]  [DOI]
65.  Macejak DG, Jensen KL, Jamison SF, Domenico K, Roberts EC, Chaudhary N, von Carlowitz I, Bellon L, Tong MJ, Conrad A. Inhibition of hepatitis C virus (HCV)-RNA-dependent translation and replication of a chimeric HCV poliovirus using synthetic stabilized ribozymes. Hepatology. 2000;31:769-776.  [PubMed]  [DOI]
66.  Beger C, Pierce LN, Kruger M, Marcusson EG, Robbins JM, Welcsh P, Welch PJ, Welte K, King MC, Barber JR. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc Natl Acad Sci USA. 2001;98:130-135.  [PubMed]  [DOI]
67.  Schultes EA, Bartel DP. One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science. 2000;289:448-452.  [PubMed]  [DOI]
68.  Levitz R, Dong Y, Wang JY, Jeng SW, Chen CR, Wang JW, Zhao X, Zhou J, Lu T, Drlica K. Cytotoxic hammerhead ribozymes. Antisense Nucleic Acid Drug Dev. 1999;9:117-123.  [PubMed]  [DOI]