This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Comparative research of dendritic cells cultured from mice bone marrow with different ways
Quan-Chu Wang, Zhi-Hua Feng, Yong-Xing Zhou, Qing-He Nie, Chu-Qiou Hao, Jiou-Ping Wang
Quan-Chu Wang, Zhi-Hua Feng, Qing-He Nie, Chu-Qiou Hao, Jiou-Ping Wang, Rong-Xing Zhou, The Center of Diagnosis and Treatment of Infection Diseases of PLA, Affiliated Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China
Supported by: the National Natural Science Foundation of China, No. 39800122.
Correspondence to: Zhi-Hua Feng, The Center of Diagnosis and Treatment of infection diseases of PLA, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, Shaanxi Province, China. quanchuwang998@hotmail.com
Received: October 25, 2002 Revised: November 2, 2002 Accepted: November 19, 2002 Published online: February 15, 2003
AIM: To compare the biological characteristics of cultured mice bone marrow dendritic cell (BM-DC) in cultural media with peritoneum or with growth stimulating factor.
METHODS: DC progenitors of were isolated from bone marrow of Balb/C mice, and transformed into DC cell by culturing with secretary fluid of peritoneum, mGM-CSF, and mIL-4, respectively. The biological features and immunity of the DC cells were studied with mixed lymphocyte reaction, immunohistochemistry staining, light microscope and scanning electronic microscope.
RESULTS: After culturing for 6-8 days, the number of BM-DC (6x106) released from proliferating colony in media containing mGM-CSF and mIL-4 was higher than that in media containing peritoneum without significant difference. High level of expressed CD86 on BM-DC was demonstrated on day 7 in culture, MLR results indicated that the stimulating ability for proliferation of T cell was higher in media with mGM-CSF, mIL-4 than that with peritoneum, while the control media without stimulating factors showed no ability to stimulate the growth of T cells
CONCLUSION: These observations demonstrated that auto-peritoneum can substitute for cytokines in media and stimulate the growth of bone marrow-derived DCs, which possess the corresponding cellular biological features and cellular immunity.
Key Words: N/A
Citation: Wang QC, Feng ZH, Zhou YX, Nie QH, Hao CQ, Wang JP. Comparative research of dendritic cells cultured from mice bone marrow with different ways. Shijie Huaren Xiaohua Zazhi 2003; 11(2): 219-223
培养4 d细胞因子组 Balb/c小鼠的 BM-DC 仅轻度促进 Balb/c小鼠T细胞的增生, 第7天 BM-DC刺激 T 细胞增生的能力增强, 刺激指数约为2-3倍; 培养7 d 腹膜组DC 无刺激 T 细胞增生的能力, 但培养第10天 DC 却表现出一定的刺激 T 细胞增生的能力(图7). 数据经 t检验(P<0.05)有统计学意义(表1).
自1993年 Inaba et al用 GM-CSF 体外成功扩增 DC 以来, DC 的研究得到迅速发展. 骨髓中造血干细胞接种培养后, 在 GM-CSF、IL-4等 的作用下能向 DC 方向分化, 经历了一个由未成熟向成熟 DC 发育的过程. 早期未成熟 DC 的突起少, MHC 分子及共刺激分子 B7-1、B7-2的表达非常低, 无刺激 T 细胞增生的能力. 成熟后, 细胞突起增多, MHC 分子及共刺激分子的表达明显升高, 能强烈刺激 T 细胞的增生[29-32] . 这与我们观察到的实验结果完全符合, 即培养6-8 d 后 BM-DC 已基本成熟. 分离得到的 DC 前体细胞较少, DC 生长发育非常缓慢, 开始时仅少量的 DC 前体细胞在贴壁细胞的表面散在分布. 培养4 d, DC 前体细胞才开始出现小的集落. 至6-8 d, DC 前体细胞数量增多, 并出现一增生高峰, 有大量的半贴壁半悬浮集落生成; 少量悬浮细胞有小的突起. 此时DC 细胞表面分子 MHC class I, II和共刺激分子 B7-1, B7-2的表达都极低, 几乎没有刺激同种异体T细胞增生的能力. 这种 DC 的生物免疫特性与未成熟 DC 非常相似, 可能是诱导 T 细胞甚至凋亡的原因. 在培养中我们发现; 在7-8 d的增生高峰期, DC 有丰富的半贴壁集落生成; 并且从10 d起开始有部分细胞从集落中释放出来. 此时 DC 细胞表面分子表达有一定程度的升高, 以 MHC class II 和 B7-2为明显, 并且其刺激 T 细胞增生的能力也有增强.
Buonocore S, Van Meirvenne S, Demoor FX, Paulart F, Thielemans K, Goldman M, Flamand V. Dendritic cells transduced with viral interleukin 10 or Fas ligand: no evidence for induction of allotolerance in vivo.Transplantation. 2002;73:S27-S30.
[PubMed] [DOI]
Wu MT, Hwang ST. CXCR5-transduced bone marrow-derived dendritic cells traffic to B cell zones of lymph nodes and modify antigen-specific immune responses.J Immunol. 2002;168:5096-5102.
[PubMed] [DOI]
Son YI, Egawa S, Tatsumi T, Redlinger RE Jr, Kalinski P, Kanto T. A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells.J Immunol Methods. 2002;262:145-157.
[PubMed] [DOI]
Basak SK, Harui A, Stolina M, Sharma S, Mitani K, Dubinett SM, Roth MD. Increased dendritic cell number and function following continuous in vivo infusion of granulocyte macrophage-colony-stimulating factor and interleukin-4.Blood. 2002;99:2869-2879.
[PubMed] [DOI]
Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O'Garra A, Liu YJ. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor.J Exp Med. 2002;195:953-958.
[PubMed] [DOI]
Poloso NJ, Nagarajan S, Mejia-Oneta JM, Selvaraj P. GPI-anchoring of GM-CSF results in active membrane-bound and partially shed cytokine.Mol Immunol. 2002;38:803-816.
[PubMed] [DOI]
Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N. Cyclooxygenase-2-issued prostaglandin e(2) enhances the production of endogenous IL-10, which down-regulates dendritic cell functions.J Immunol. 2002;168:2255-2263.
[PubMed] [DOI]
Asavaroengchai W, Kotera Y, Mulé JJ. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery.Proc Natl Acad Sci U S A. 2002;99:931-936.
[PubMed] [DOI]
Xie Z, Cao X, Zhang W, Ye X, Yu B, Zheng Z. Endocytic routes of exogenous antigen in murine dendritic cells and macrophages.Chin Med J (Engl). 2001;114:93-96.
[PubMed] [DOI]
Eggert AO, Becker JC, Ammon M, McLellan AD, Renner G, Merkel A, Brocker EB, Kampgen E. Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture.Eur J Immunol. 2002;32:122-127.
[PubMed] [DOI]
Kanazawa N, Okazaki T, Nishimura H, Tashiro K, Inaba K, Miyachi Y. DCIR acts as an inhibitory receptor depending on its immunoreceptor tyrosine-based inhibitory motif.J Invest Dermatol. 2002;118:261-266.
[PubMed] [DOI]
Machy P, Serre K, Baillet M, Leserman L. Induction of MHC class I presentation of exogenous antigen by dendritic cells is controlled by CD4+ T cells engaging class II molecules in cholesterol-rich domains.J Immunol. 2002;168:1172-1180.
[PubMed] [DOI]
Bai L, Feuerer M, Beckhove P, Umansky V, Schirrmacher V. Generation of dendritic cells from human bone marrow mononuclear cells: advantages for clinical application in comparison to peripheral blood monocyte derived cells.Int J Oncol. 2002;20:247-253.
[PubMed] [DOI]
Eggert AO, Becker JC, Ammon M, McLellan AD, Renner G, Merkel A, Bröcker EB, Kämpgen E. Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture.Eur J Immunol. 2002;32:122-127.
[PubMed] [DOI]
Hasel T, Yoshimura R, Wada S, Chargui J. Dendritic cells, generated in vitro, are immunocompetent and very useful in the induction of specific cytotoxic T lymphocyte activity.Transplant Proc. 2001;33:3814-3815.
[PubMed] [DOI]
Björck P. Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice.Blood. 2001;98:3520-3526.
[PubMed] [DOI]
Fujii S, Shimizu K, Fujimoto K, Kiyokawa T, Tsukamoto A, Sanada I, Kawano F. Treatment of post-transplanted, relapsed patients with hematological malignancies by infusion of HLA-matched, allogeneic-dendritic cells (DCs) pulsed with irradiated tumor cells and primed T cells.Leuk Lymphoma. 2001;42:357-369.
[PubMed] [DOI]
Oki M, Ando K, Hagihara M, Miyatake H, Shimizu T, Miyoshi H, Nakamura Y, Matsuzawa H, Sato T, Ueda Y. Efficient lentiviral transduction of human cord blood CD34(+) cells followed by their expansion and differentiation into dendritic cells.Exp Hematol. 2001;29:1210-1217.
[PubMed] [DOI]
Albert ML, Jegathesan M, Darnell RB. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells.Nat Immunol. 2001;2:1010-1017.
[PubMed] [DOI]
Ni K, O'Neill HC. Development of dendritic cells from GM-CSF-/- mice in vitro : GM-CSF enhances production and survival of cells.Dev Immunol. 2001;8:133-146.
[PubMed] [DOI]