修回日期: 2003-01-20
接受日期: 2003-02-18
在线出版日期: 2003-10-15
肝纤维化是近年学术界研究的热点, 现一致认为肝纤维化是肝脏对不同的病因(如病毒、乙醇、寄生虫等)所致的慢性损害共有的应答反应, 表现为肝脏细胞外基质各成分的过度沉积及分布异常, 是纤维增生和纤维降解不平衡的结果. 如纤维化进一步发展, 则引起肝小叶改建, 假小叶和结节形成, 进入肝硬化阶段. 近年来随着细胞生物学和生物化学的深入研究, 对肝纤维化的发生机制有了更深的认识, 并逐渐改变了传统肝纤维化不可逆转的观点, 明确提出了肝纤维化完全有可能逆转的观点. 因此阻断肝纤维化的形成和发展对于防治肝硬化具有重要意义. 本文主要综述近年来抗肝纤维化在药物治疗、中药有效成分及基因治疗三个方面的研究进展.
引文著录: 叶方鹏, 肖冰, 张万岱. 肝纤维化治疗研究进展. 世界华人消化杂志 2003; 11(10): 1572-1575
Revised: January 20, 2003
Accepted: February 18, 2003
Published online: October 15, 2003
N/A
- Citation: N/A. N/A. Shijie Huaren Xiaohua Zazhi 2003; 11(10): 1572-1575
- URL: https://www.wjgnet.com/1009-3079/full/v11/i10/1572.htm
- DOI: https://dx.doi.org/10.11569/wcjd.v11.i10.1572
肝纤维化是各种病因所致的慢性肝病的共同病理过程是向肝硬化发展的主要中心环节 [1]. 近年来随着细胞生物学, 生物化学的深入研究, 认为肝纤维化是慢性肝损伤过程中多种细胞密切联系, 并通过多种细胞因子, 细胞外基质蛋白等相互作用, 相互影响组成的网络来调控. 其中肝星状细胞(hepatic stellate cell, HSC)的激活是核心事件[2,3]. 并逐渐改变了传统肝纤维化不可逆转的观点, 明确提出了肝纤维化完全有可能逆转的观点[4]. 所以阻断肝纤维化的形成和发展对于防治肝硬化具有重要意义. 本文主要综述近年来抗肝纤维化在药物治疗、中药有效成分及基因治疗三个方面的研究进展.
目前临床上用于治疗肝纤维化的药物主要有秋水仙碱[5], 糖皮质激素[6]等, 虽然这些药物在一定程度上具有抗纤维化的作用, 但由于其严重的不良反应及其作用机制的不清, 因此在临床应用上受到限制.近年来, 肝纤维化药物治疗取得了长足的进步, 并且大多从分子机制得到了阐明.
IFN-γ是一种免疫调节剂, 主要用于自身免疫性疾病[7,8], 病毒性疾病[9,10]和肿瘤[11,12]的治疗. IFN-γ现被认为是一种很强的抗肝纤维化因子[13]. 贺永文et al [14]运用IFN-γ治疗血吸虫病小鼠肝纤维化, 发现IFN-γ能够抗虫卵肉芽肿的炎症反应, 减少ECM的分泌和沉积, 从而抑制肝纤维化形成的作用. 蔡卫民et al [15]用IFN-γ治疗20例慢性肝炎肝纤维化患者, 与对照组相比, IFN-γ治疗组白蛋白升高, 透明质酸(hyaluronic acid, HA), III型前胶原(PC III), IV型胶原(IV C), 层黏连蛋白(laminin, LN)等显著下降. 现认为IFN-γ抗纤维化的主要机制[16,17]为抑制HSC的激活, 抗病毒及抗炎作用, 抑制胶原基因mRNA表达, 主要是I、III型胶原mRNA的表达, 刺激其他细胞因子如前列腺素E释放, 是一个较有前途的抗肝纤维化药物.
肝脏的枯否细胞、HSC、窦状内皮细胞等能产生PGE1 , PGE1作为局部激素作用于肝细胞具有保护肝细胞, 阻止肝细胞坏死, 抑制肝纤维化, 改善局部微循环, 调节免疫病理反应等多种作用[18,19]. 何文革et al [20]将100例患者随机分为两组. 结果治疗组血清HA, IV C, LN水平明显降低, 且脾脏缩小, 提示其具有一定抗纤维化作用.
己酮可可碱是甲基黄嘌呤可可碱的衍生物, 在临床上已广泛用于治疗外周血管疾病[21]. 最近, 经动物实验和细胞培养研究发现他具有一定的抗纤维化作用, 其机制[22,23]主要是抑制肝HSC的增生, α平滑肌收缩蛋白(α-SMA)的表达减少, 从而降低ECM成分. 另外, 他还可抑制血小板源性生长因子(PDGF)介导的肝HSC增生, 并阻止大鼠肝HSC转化为激活状态[24,25]. Raetsch et al [26]采用胆管结扎制作肝纤维化大鼠模型, 并用不同剂量的已酮可可碱灌胃治疗, 结果发现, 治疗组能够显著降低I型胶原mRNA的含量, 并抑制致纤维化因子转化生长因子(TGF-β1)的分泌, 下降约60-70%, 但发现组织基质金属蛋白酶抑制剂(TIMP-1)mRNA上升了2倍, 结果导致肝组织胶原合成及III型前胶原肽含量只是呈中等程度的降低, 并指出如果能与TIMP-1抑制剂合用, 能成为一个较有希望的抗肝纤维化药物.
安体舒通是醛固酮的拮抗剂, 而醛固酮现被认为有致纤维化作用, 而安体舒通有一定的抗纤维化作用[27,28]. Yang et al [29]发现, 在HSC激活过程中, 其醛固酮合成酶基因表达增强, 醛固酮合成增加, 运用安体舒通治疗四氯化碳(carbon tetrachloride, CCl4)所致的大鼠肝纤维化模型, 发现安体舒通治疗组早期肝纤维化分级, 胶原面积均低于模型组, 但后期作用不明显, 故认为安体舒通对早期肝纤维化有一定的治疗作用.
近10 a来, 中医药抗肝纤维化治疗研究取得较大进展, 其中中药有效成分抗肝纤维化的研究取得了一些可喜的成绩, 甘草甜素、苦参碱等已试用于临床, 效果较为满意. 这些有效成分大多具有减少肝脏胶原沉积, 促进肝脏胶原降解, 减轻肝脏炎症及促进肝细胞再生等功能.
甘草甜素是从中药甘草中提取的有效成分. 该药治疗慢性肝炎的机制[39,40]在于能减少纤维化动物Ⅰ型胶原含量、抑制培养细胞I、III型前胶原mRNA的表达. 他的另一个可能的作用机制在于可以诱导产生干扰素的免疫调节活性. 王吉耀et al[41]应用甘草甜素治疗大鼠肝纤维化模型, 能使血清转氨酶下降, 肝脏脂肪变性和纤维化程度降低, 并抑制肝脏内核因子(NF-κB)活性.
氧化苦参碱是从中药苦豆子或苦参根中提取的有效成分, 具有抗炎、免疫调节等作用. 氧化苦参碱目前已经广泛应用于临床慢性病毒性肝炎的治疗并且取得良好的疗效[42,43]. 成扬 et al[44]用氧化苦参碱干预刀豆蛋白A致敏的肝纤维化小鼠模型, 可显著减轻小鼠肝脏组织内炎症活动度和抑制肝内胶原纤维组织增生, 而且呈现剂量依赖性. 认为其机制为抑制HSC的增生及III型胶原mRNA的表达, 阻断小鼠肝细胞凋亡, 抑制炎症细胞因子的分泌.
汉防已甲素是从防已科植物粉防已等根中提取的一种属异喹啉化合物的生物碱, 后被证明为钙通道阻滞剂, 其作用于钙离子通道, 影响钙离子的跨膜转运以及在细胞内的分布利用. 现发现汉防已甲素有抗纤维化作用[45,46]. 李定国et al [47]报道汉防已甲素防治CCl4引起的肝纤维化大鼠模型, 结果显示各期治疗组大鼠HA含量, 血清AST活性均低于对照组, 肝细胞变性、坏死及炎细胞浸润程度均低于对照组, 纤维组织增生减轻, 认为汉防已甲素能显著改善肝功能, 抑制HSC的增生转化, ECM合成减少, 并认为其作用与阻断Ca2+内流无关.
大黄素属单蒽核类1, 8二羟基蒽衍生物, 是大黄、虎杖、何首乌等多种中药的有效成分之一. 具有抗病毒、抑菌、利尿等多种作用[48,49]. 展玉涛et al [50]等用不同剂量的大黄素干预CCl4所致的大鼠肝纤维化模型, 结果大黄组肝功能明显改善, HA及LN显著降低, 肝组织胶原蛋白含量明显减少, α-SMA表达减少, 并呈剂量依赖关系.现认为大黄素抗肝纤维化的机制为保护肝细胞并抑制肝星状细胞的激活[51].
随着对肝纤维化形成机制认识的深入及现代分子生物学技术的提高, 使基因治疗肝纤维化成为可能[57-60], 并日益引起学者们的重视. 目前基因治疗主要集中于调控肝纤维化相关细胞因子的表达, 报告较多的有生长转化因子β(TGF-β), 肝细胞生长因子(HGF)及γ-干扰素(IFN-γ)等.
TGF-β被认为是肝纤维化过程中关键的因子[61-63], 因此阻断TGF-β的信号通路成为肝纤维化治疗的理想选择. Qi et al [64]构建了表达 TGF-β2受体细胞外区域的复制缺陷型腺病毒载体, 通过门静脉注射实现其在肝脏的局部表达. 结果表明注射后大鼠肝脏I型胶原、FN、羟脯氨酸含量、α-SMA、单核/巨噬细胞等与对照组相比均显著减少. HSC及枯否细胞的活化被抑制, 显示出良好的抑制肝纤维化进展的作用. 而且能使血清 ALT、AST水平显著下降. Ueno et al [65]构建表达人类TGF-β2可溶性受体的腺病毒载体, 并把其注入大鼠肌肉, 可在血中测到TGF-β2可溶性受体, 并且显现出良好抗纤维化作用. 因此以腺病毒为载体将阻断 TGF-β表达的基因转导至体内是治疗肝纤维化非常有潜力的方法.
HGF是一种多功能细胞因子, 能刺激多种类型细胞分化、增生、再生, 对肝再生具有强大的促进作用[66,67]. Ueki et al [68]将人HGF-cDNA质粒包裹后反复注射至肝纤维化大鼠肌肉中, 能在血液中测出高水平表达的人HGF及相应升高的内源性鼠HGF. 注射组中, 肝细胞表面的HGF特异性受体c-met蛋白表达量显著增加, 免疫组化证实α-SMA于注射后明显减少, 提示HGF在体内可抑制HSC活化, 减少I型胶原、TGF-β合成.
IFN-γ是一种较强的抗肝纤维化因子, Zhang et al [69]将重组IFN-γ腺病毒转染的肝细胞经脾移植给血吸虫感染16 wk的小鼠, 结果发现IFN-γ基因治疗能显著降低I、III型胶原的合成与沉积, 减轻肝纤维化程度. Song et al [70]把表达IFN-γ的腺病毒载体转染CCl4致模的大鼠肝细胞, 能显著减少胶原的合成, 降低血清羟脯氨酸和III型前胶原肽的水平.
总之, 目前抗纤维化治疗有了长足的进步, 但大多数尚处于动物实验阶段. 药物尤其是中药将会是今后肝纤维化治疗的最主要措施. 但这些中药含有抗纤维化作用的单体成分及其确切机制不是很清楚. 提取这些中药的单体成分, 从细胞、分子水平研究这些单体抗纤维作用的确切机制, 将是以后抗肝纤维化研究的主要方向.
1. | Lamireau T, Desmouliere A, Bioulac-Sage P, Rosenbaum J. Mechanisms of hepatic fibrogenesis. Arch Pediatr. 2002;9:392-405. [DOI] |
2. | Mann DA, Smart DE. Transcriptional regulation of hepatic stellate cell activation. Gut. 2002;50:891-896. [PubMed] [DOI] |
3. | Lewindon PJ, Pereira TN, Hoskins C, Bridle KR, Williamson RM, Shepherd RW, Ramm GA. The role of hepatic stellate cells and transforming growth factor-beta(1) in cystic fibrosis liver disease. Am J Pathol. 2002;160:1705-1715. [DOI] |
4. | Okazaki I, Watanabe T, Hozawa S, Niioka M, Arai M, Maruyama K. Reversibility of hepatic fibrosis: from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med. 2001;50:58-65. [DOI] |
5. | Montasser MF, Younis TA, Fahmy IA, Sabry NM, el-Monayerhy MS, Rashad MS. Histopathological evidences for the antifibrogenic effect of colchicine in schistosomiasis mansoni in mice. J Egypt Soc Parasitol. 1994;24:155-165. [PubMed] |
6. | Leuschner M, Maier KP, Schlichting J, Strahl S, Herrmann G, Dahm HH, Ackermann H, Happ J, Leuschner U. Oral budesonide and ursodeoxycholic acid for treatment of primary biliary cirrhosis: results of a prospective double-blind trial. Gastroenterology. 1999;117:918-925. [DOI] |
7. | Rosloniec EF, Latham K, Guedez YB. Paradoxical roles of IFN-gamma in models of Th1-mediated autoimmunity. Arthritis Res. 2002;4:333-336. [PubMed] [DOI] |
8. | Theofilopoulos AN, Koundouris S, Kono DH, Lawson BR. The role of IFN-gamma in systemic lupus erythematosus: a challenge to the Th1/Th2 paradigm in autoimmunity. Arthritis Res. 2001;3:136-141. [PubMed] [DOI] |
9. | Johnsen CK, Botner A, Kamstrup S, Lind P, Nielsen J. Cytokine mRNA profiles in bronchoalveolar cells of piglets experimentally infected in utero with porcine reproductive and respiratory syndrome virus: association of sustained expression of IFN-gamma and IL-10 after viral clearance. Viral Immunol. 2002;15:549-556. [PubMed] [DOI] |
10. | Boaz MJ, Waters A, Murad S, Easterbrook PJ, Vyakarnam A. Presence of HIV-1 Gag-specific IFN-gamma+IL-2+ and CD28+IL-2+CD4 T cell responses is associated with nonprogression in HIV-1 infection. J Immunol. 2002;169:6376-6385. [DOI] |
11. | Li G, Kawakami S, Kageyama Y, Yan C, Saito K, Kihara K. IFN gamma-induced up-regulation of PD-ECGF/TP enhances the cytotoxicity of 5-fluorouracil and 5'-deoxy-5-fluorouridine in bladder cancer cells. Anticancer Res. 2002;22:2607-2612. [PubMed] |
12. | Gattacceca F, Pilatte Y, Billard C, Monnet I, Moritz S, Le Carrou J, Eloit M, Jaurand MC. Ad-IFN gamma induces antiproliferative and antitumoral responses in malignant mesothelioma. Clin Cancer Res. 2002;8:3298-3304. [PubMed] |
13. | Weng HL, Cai WM, Liu RH. Animal experiment and clinical study of effect of gamma-interferon on hepatic fibrosis. World J Gastroenterol. 2001;7:42-48. [DOI] |
16. | Du X, Weng H, Cai W. Histological changes in 20 hepatic fibrosis patients with chronic hepatitis B after recombinant human interferon-gamma treatment. Zhonghua Ganzangbing Zazhi. 2001;9:273-275. [PubMed] |
17. | Henri S, Chevillard C, Mergani A, Paris P, Gaudart J, Camilla C, Dessein H, Montero F, Elwali NE, Saeed OK. Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-gamma is associated with protection against fibrosis and TNF-alpha with aggravation of disease. J Immunol. 2002;169:929-936. [DOI] |
18. | Akamatsu K, Yamasaki Y, Nishikawa M, Takakura Y, Hashida M. Synthesis and pharmacological activity of a novel water-soluble hepatocyte-specific polymeric prodrug of prostaglandin E(1) using lactosylated poly(L-glutamic hydrazide) as a carrier. Biochem Pharmacol. 2001;62:1531-1536. [DOI] |
19. | Akamatsu K, Yamasaki Y, Nishikawa M, Takakura Y, Hashida M. Development of a hepatocyte-specific prostaglandin E (1) polymeric prodrug and its potential for preventing carbon tetrachloride-induced fulminant hepatitis in mice. J Pharmacol Exp Ther. 1999;290:1242-1249. [PubMed] |
21. | Nikolovska S, Pavlova L, Petrova N, Gocev G, Ivanovski M. Pentoxifylline梕fficient in the treatment of venous ulcers in the absence of compression. Acta Dermatovenerol Croat. 2002;10:9-13. [PubMed] |
22. | Desmouliere A, Xu G, Costa AM, Yousef IM, Gabbiani G, Tuchweber B. Effect of pentoxifylline on early proliferation and phenotypic modulation of fibrogenic cells in two rat models of liver fibrosis and on cultured hepatic stellate cells. J Hepatol. 1999;30:621-631. [DOI] |
24. | Chen YM, Wu KD, Tsai TJ, Hsieh BS. Pentoxifylline inhibits PDGF-induced proliferation of and TGF-beta-stimulated collagen synthesis by vascular smooth muscle cells. J Mol Cell Cardiol. 1999;31:773-783. [PubMed] [DOI] |
25. | Isbrucker RA, Peterson TC. Platelet-derived growth factor and pentoxifylline modulation of collagen synthesis in myofibroblasts. Toxicol Appl Pharmacol. 1998;149:120-126. [PubMed] [DOI] |
26. | Raetsch C, Jia JD, Boigk G, Bauer M, Hahn EG, Riecken EO, Schuppan D. Pentoxifylline downregulates profibrogenic cytokines and procollagen I expression in rat secondary biliary fibrosis. Gut. 2002;50:241-247. [DOI] |
27. | Silvestre JS, Heymes C, Oubenaissa A, Robert V, Aupetit-Faisant B, Carayon A, Swynghedauw B, Delcayre C. Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation. 1999;99:2694-2701. [DOI] |
28. | Miric G, Dallemagne C, Endre Z, Margolin S, Taylor SM, Brown L. Reversal of cardiac and renal fibrosis by pirfenidone and spironolactone in streptozotocin-diabetic rats. Br J Pharmacol. 2001;133:687-694. [PubMed] [DOI] |
29. | Yang X, Li X, Wu P, Meng Y, Li S, Lai W. CYP11B2 expression in rat liver and the effect of spironolactone on hepatic fibrogenesis. Horm Res. 2000;53:288-293. [PubMed] |
30. | Nakamura T, Ushiyama C, Osada S, Hara M, Shimada N, Koide H. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism. 2001;50:1193-1196. [PubMed] [DOI] |
31. | Kon K, Ikejima K, Hirose M, Yoshikawa M, Enomoto N, Kitamura T, Takei Y, Sato N. Pioglitazone prevents early-phase hepatic fibrogenesis caused by carbon tetrachloride. Biochem Biophys Res Commun. 2002;291:55-61. [PubMed] [DOI] |
32. | Galli A, Crabb DW, Ceni E, Salzano R, Mello T, Svegliati-Baroni G, Ridolfi F, Trozzi L, Surrenti C, Casini A. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002;122:1924-1940. [DOI] |
33. | Abramovitch R, Dafni H, Neeman M, Nagler A, Pines M. Inhibition of neovascularization and tumor growth, and facilitation of wound repair, by halofuginone, an inhibitor of collagen type I synthesis. Neoplasia. 1999;1:321-329. [DOI] |
34. | Nagler A, Genina O, Lavelin I, Ohana M, Pines M. Halofuginone, an inhibitor of collagen type I synthesis, prevents postoperative adhesion formation in the rat uterine horn model. Am J Obstet Gynecol. 1999;180:558-563. [DOI] |
35. | Elkin M, Ariel I, Miao HQ, Nagler A, Pines M, de Groot N, Hochberg A, Vlodavsky I. Inhibition of bladder carcinoma angiogenesis, stromal support, and tumor growth by halofuginone. Cancer Res. 1999;59:4111-4118. [PubMed] |
36. | Nagler A, Gofrit O, Ohana M, Pode D, Genina O, Pines M. The effect of halofuginone, an inhibitor of collagen type isynthesis, on urethral stricture formation: in vivo and in vitro study in a rat model. J Urol. 2000;164:1776-1780. [DOI] |
37. | Bruck R, Genina O, Aeed H, Alexiev R, Nagler A, Avni Y, Pines M. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology. 2001;33:379-386. [PubMed] [DOI] |
38. | McGaha TL, Phelps RG, Spiera H, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol. 2002;118:461-470. [PubMed] [DOI] |
51. | Zhan Y, Li D, Wei H. Effect of emodin on development of hepatic fibrosis in rats. Zhongguo Zhongxiyi Jiehe Zazhi. 2000;20:276-278. [PubMed] |
52. | Suzuki T, Suzuki T, Wada T, Saigo K, Watanabe K. Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases. EMBO J. 2002;21:6581-6589. |
57. | Garcia-Banuelos J, Siller-Lopez F, Miranda A, Aguilar LK, Aguilar-Cordova E, Armendariz-Borunda J. Cirrhotic rat livers with extensive fibrosis can be safely transduced with clinical-grade adenoviral vectors. Evidence of cirrhosis reversion. Gene Ther. 2002;9:127-134. [PubMed] |
58. | Dai WJ, Jiang HC. Advances in gene therapy of liver cirrhosis: a review. World J Gastroenterol. 2001;7:1-8. [DOI] |
59. | Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci. 2002;1:793-807. [DOI] |
60. | Nie QH, Cheng YQ, Xie YM, Zhou YX, Cao YZ. Inhibiting effect of antisense oligonucleotides phosphorthioate on gene expression of TIMP-1 in rat liver fibrosis. World J Gastroenterol. 2001;7:363-369. [DOI] |
61. | Okazaki I, Watanabe T, Hozawa S, Niioka M, Arai M, Maruyama K. Reversibility of hepatic fibrosis: from the first report of collagenase in the liver to the possibility of gene therapy for recovery. Keio J Med. 2001;50:58-65. [DOI] |
62. | De Bleser PJ, Niki T, Rogiers V, Geerts A. Transforming growth factor-beta gene expression in normal and fibrotic rat liver. J Hepatol. 1997;26:886-893. [DOI] |
63. | Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and non-parenchymal cells of rat liver: regulation by TNF-alpha and TGF-beta1. J Hepatol. 1999;30:48-60. [DOI] |
64. | Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci. 1999;96:2345-2349. [DOI] |
65. | Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther. 2000;11:33-42. [PubMed] [DOI] |
66. | Gohda E. Function and regulation of production of hepatocyte growth factor (HGF). Nippon Yakurigaku Zasshi. 2002;119:287-294. [DOI] |
67. | Yu SL, Yang FH. Molecular biological progress of hepatocyte growth factor (HGF). Shengwu Gongcheng Xuebao. 2002;18:1-4. [PubMed] |
68. | Ueki T, Kaneda Y, Tsutsui H, Nakanishi K, Sawa Y, Morishita R, Matsumoto K, Nakamura T, Takahashi H, Okamoto E. Hepatocyte growth factor gene therapy of liver cirrhosis in rats. Nat Med. 1999;5:226-230. [PubMed] [DOI] |
69. | Zhang L, Mi J, Yu Y, Yao H, Chen H, Li M, Cao X. IFN-gamma gene therapy by intrasplenic hepatocyte transplantation: a novel strategy for reversing hepatic fibrosis in Schistosoma japonicum-infected mice. Parasite Immunol. 2001;23:11-17. [DOI] |
70. | Song E, Chen J, Wang K, Zhang H, Su F, Wang M, Heemann U. Intrasplenic transplantation of syngenic hepatocytes modified by IFN-gamma gene ameliorates hepatic fibrosis in rats. Transpl Int. 2002;15:472-478. [DOI] |