Copyright
©The Author(s) 2025.
World J Gastroenterol. Mar 7, 2025; 31(9): 101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Table 1 Basic clinical characteristics of non-alcoholic steatohepatitis patients
Variables | Total (n = 746) | Validation cohort (n = 224) | Training cohort (n = 522) | P value |
Age (years) | 44.45 ± 15.11 | 44.03 ± 15.51 | 44.62 ± 14.95 | 0.623 |
Gender | 0.328 | |||
Female | 416 (55.76) | 131 (58.48) | 285 (54.60) | |
Male | 330 (44.24) | 93 (41.52) | 237 (45.40) | |
Hypertension | 352 (47.18) | 101 (45.09) | 251 (48.08) | 0.453 |
Diabetes | 345 (46.25) | 97 (43.30) | 248 (47.51) | 0.291 |
Smoking | 137 (18.36) | 35 (15.62) | 102 (19.54) | 0.206 |
BMI | 28.16 ± 4.70 | 27.82 ± 4.84 | 28.31 ± 4.63 | 0.186 |
ALT | 101.39 ± 127.91 | 90.11 ± 106.34 | 106.22 ± 135.93 | 0.115 |
AST | 59.42 ± 77.85 | 50.85 ± 51.24 | 63.09 ± 86.59 | 0.017 |
Total bilirubin | 16.08 ± 18.76 | 14.76 ± 17.61 | 16.64 ± 19.22 | 0.21 |
Albumin | 44.04 ± 4.60 | 43.86 ± 4.68 | 44.12 ± 4.57 | 0.474 |
γ-GGT | 94.74 ± 125.55 | 85.23 ± 117.60 | 98.90 ± 128.77 | 0.183 |
Creatinine | 4.78 ± 1.26 | 4.77 ± 1.31 | 4.78 ± 1.25 | 0.902 |
Blood urea nitrogen | 65.03 ± 14.65 | 64.49 ± 14.71 | 65.27 ± 14.64 | 0.51 |
Leukocyte | 6.35 ± 1.81 | 6.25 ± 1.78 | 6.40 ± 1.83 | 0.317 |
Platelet | 224.33 ± 71.99 | 227.77 ± 78.80 | 222.87 ± 68.92 | 0.422 |
INR | 2.23 ± 9.44 | 3.22 ± 13.71 | 1.79 ± 6.77 | 0.059 |
Total cholesterol | 4.77 ± 0.97 | 4.78 ± 0.98 | 4.76 ± 0.96 | 0.74 |
Triglyceride | 2.23 ± 1.26 | 2.28 ± 1.33 | 2.21 ± 1.23 | 0.477 |
Complement C3 | 1.10 ± 0.34 | 1.09 ± 0.35 | 1.10 ± 0.33 | 0.704 |
Complement C4 | 0.23 ± 0.08 | 0.21 ± 0.06 | 0.23 ± 0.09 | 0.015 |
HbA1c | 7.28 ± 2.58 | 7.16 ± 2.52 | 7.34 ± 2.60 | 0.504 |
VCTE-CAP | 296.03 ± 46.89 | 299.15 ± 49.03 | 294.80 ± 46.04 | 0.385 |
VCTE-LSM | 9.02 ± 5.05 | 9.56 ± 6.81 | 8.81 ± 4.15 | 0.166 |
APRI | 0.33 ± 0.61 | 0.29 ± 0.40 | 0.35 ± 0.69 | 0.218 |
FIB-4 | 241.40 ± 915.28 | 299.15 ± 49.03 | 227.76 ± 1017.03 | 0.437 |
F3/F4 | 278 (37.27) | 81 (36.16) | 197 (37.74) | 0.683 |
Table 2 Diagnostic performance of the machine learning models for moderate to advanced liver fibrosis
Cohort | Models | Accuracy | Area under receiver operating characteristic curve | F1 scores | Sensitivity | Specificity | Positive predictive value | Negative predictive value | P value |
Training | XGB | 0.862 (0.830-0.891) | 0.934 (0.914-0.955) | 0.838 | 0.958 | 0.744 | 0.856 | 0.876 | |
RF | 0.877 (0.846-0.904) | 0.857 (0.825-0.888) | 0.817 | 0.944 | 0.72 | 0.869 | 0.894 | < 0.001 | |
SVM | 0.8199 (0.784-0.852) | 0.773 (0.738-0.809) | 0.724 | 0.969 | 0.578 | 0.789 | 0.92 | < 0.001 | |
LR | 0.784 (0.746-0.818) | 0.805 (0.764-0.846) | 0.715 | 0.901 | 0.593 | 0.782 | 0.787 | < 0.001 | |
NB | 0.385 (0.343-0.428) | 0.503 (0.499-0.575) | 0.012 | 0.006 | 1 | 1 | 0.383 | < 0.001 | |
Validation | XGB | 0.853 (0.799-0.896) | 0.917 (0.880-0.953) | 0.78 | 0.959 | 0.658 | 0.837 | 0.897 | |
RF | 0.875 (0.824-0.915) | 0.840 (0.788-0.892) | 0.758 | 0.959 | 0.626 | 0.863 | 0.905 | < 0.001 | |
SVM | 0.813 (0.755-0.861) | 0.740 (0.684-0.796) | 0.658 | 0.986 | 0.494 | 0.784 | 0.951 | < 0.001 | |
LR | 0.790 (0.731-0.842) | 0.745 (0.669-0.821) | 0.641 | 0.959 | 0.481 | 0.772 | 0.864 | < 0.001 | |
NB | 0.357 (0.294-0.424) | 0.503 (0.495-0.510) | 0.014 | 0.007 | 1 | 1 | 0.354 | < 0.001 |
Table 3 Diagnostic performance of the Extreme Gradient Boosting model and other non-invasive diagnosis models for advanced liver fibrosis
Cohort | Models | Accuracy | Area under receiver operating characteristic curve | Sensitivity | Specificity | Positive predictive value | Negative predictive value | P value |
Training | XGB | 0.810 (0.764-0.841) | 0.934 (0.914-0.955) | 0.958 | 0.744 | 0.786 | 0.914 | |
XGB + LSM | 0.844 (0.7815-0.898) | 0.977 (0.966-0.980) | 0.985 | 0.758 | 0.837 | 0.929 | < 0.001 | |
APRI | 0.715 (0.674-0.753) | 0.803 (0.765-0.841) | 0.907 | 0.402 | 0.711 | 0.727 | < 0.001 | |
FIB-4 | 0.734 (0.774-0.848) | 0.811 (0.774-0.848) | 0.898 | 0.467 | 0.732 | 0.738 | < 0.001 | |
Validation | XGB | 0.794 (0.765-0.862) | 0.917 (0.880-0.953) | 0.925 | 0.658 | 0.756 | 0.884 | |
XGB + LSM | 0.821 (0.755-0.880) | 0.970 (0.950-0.990) | 0.954 | 0.739 | 0.81 | 0.908 | < 0.001 | |
APRI | 0.710 (0.646-0.769) | 0.737 (0.669-0.805) | 0.917 | 0.329 | 0.715 | 0.684 | < 0.001 | |
FIB-4 | 0.688 (0.622-0.748) | 0.752 (0.687-0.816) | 0.912 | 0.165 | 0.681 | 0.765 | < 0.001 |
- Citation: Xiong FX, Sun L, Zhang XJ, Chen JL, Zhou Y, Ji XM, Meng PP, Wu T, Wang XB, Hou YX. Machine learning-based models for advanced fibrosis in non-alcoholic steatohepatitis patients: A cohort study. World J Gastroenterol 2025; 31(9): 101383
- URL: https://www.wjgnet.com/1007-9327/full/v31/i9/101383.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i9.101383