Retrospective Cohort Study
Copyright ©The Author(s) 2025.
World J Gastroenterol. Mar 7, 2025; 31(9): 101383
Published online Mar 7, 2025. doi: 10.3748/wjg.v31.i9.101383
Table 1 Basic clinical characteristics of non-alcoholic steatohepatitis patients
Variables
Total (n = 746)
Validation cohort (n = 224)
Training cohort (n = 522)
P value
Age (years)44.45 ± 15.1144.03 ± 15.5144.62 ± 14.950.623
Gender0.328
        Female416 (55.76)131 (58.48)285 (54.60)
        Male330 (44.24)93 (41.52)237 (45.40)
Hypertension352 (47.18)101 (45.09)251 (48.08)0.453
Diabetes345 (46.25)97 (43.30)248 (47.51)0.291
Smoking137 (18.36)35 (15.62)102 (19.54)0.206
BMI28.16 ± 4.7027.82 ± 4.8428.31 ± 4.630.186
ALT101.39 ± 127.9190.11 ± 106.34106.22 ± 135.930.115
AST59.42 ± 77.8550.85 ± 51.2463.09 ± 86.590.017
Total bilirubin16.08 ± 18.7614.76 ± 17.6116.64 ± 19.220.21
Albumin44.04 ± 4.6043.86 ± 4.6844.12 ± 4.570.474
γ-GGT94.74 ± 125.5585.23 ± 117.6098.90 ± 128.770.183
Creatinine4.78 ± 1.264.77 ± 1.314.78 ± 1.250.902
Blood urea nitrogen65.03 ± 14.6564.49 ± 14.7165.27 ± 14.640.51
Leukocyte6.35 ± 1.816.25 ± 1.786.40 ± 1.830.317
Platelet224.33 ± 71.99227.77 ± 78.80222.87 ± 68.920.422
INR2.23 ± 9.443.22 ± 13.711.79 ± 6.770.059
Total cholesterol4.77 ± 0.974.78 ± 0.984.76 ± 0.960.74
Triglyceride2.23 ± 1.262.28 ± 1.332.21 ± 1.230.477
Complement C31.10 ± 0.341.09 ± 0.351.10 ± 0.330.704
Complement C40.23 ± 0.080.21 ± 0.060.23 ± 0.090.015
HbA1c7.28 ± 2.587.16 ± 2.527.34 ± 2.600.504
VCTE-CAP296.03 ± 46.89299.15 ± 49.03294.80 ± 46.040.385
VCTE-LSM9.02 ± 5.059.56 ± 6.818.81 ± 4.150.166
APRI0.33 ± 0.610.29 ± 0.400.35 ± 0.690.218
FIB-4241.40 ± 915.28299.15 ± 49.03227.76 ± 1017.030.437
F3/F4278 (37.27)81 (36.16)197 (37.74)0.683
Table 2 Diagnostic performance of the machine learning models for moderate to advanced liver fibrosis
Cohort
Models
Accuracy
Area under receiver operating characteristic curve
F1 scores
Sensitivity
Specificity
Positive predictive value
Negative predictive value
P value
TrainingXGB0.862 (0.830-0.891)0.934 (0.914-0.955)0.8380.9580.7440.8560.876
RF0.877 (0.846-0.904)0.857 (0.825-0.888)0.8170.9440.720.8690.894< 0.001
SVM0.8199 (0.784-0.852)0.773 (0.738-0.809)0.7240.9690.5780.7890.92< 0.001
LR0.784 (0.746-0.818)0.805 (0.764-0.846)0.7150.9010.5930.7820.787< 0.001
NB0.385 (0.343-0.428)0.503 (0.499-0.575)0.0120.006110.383< 0.001
ValidationXGB0.853 (0.799-0.896)0.917 (0.880-0.953)0.780.9590.6580.8370.897
RF0.875 (0.824-0.915)0.840 (0.788-0.892)0.7580.9590.6260.8630.905< 0.001
SVM0.813 (0.755-0.861)0.740 (0.684-0.796)0.6580.9860.4940.7840.951< 0.001
LR0.790 (0.731-0.842)0.745 (0.669-0.821)0.6410.9590.4810.7720.864< 0.001
NB0.357 (0.294-0.424)0.503 (0.495-0.510)0.0140.007110.354< 0.001
Table 3 Diagnostic performance of the Extreme Gradient Boosting model and other non-invasive diagnosis models for advanced liver fibrosis
Cohort
Models
Accuracy
Area under receiver operating characteristic curve
Sensitivity
Specificity
Positive predictive value
Negative predictive value
P value
TrainingXGB0.810 (0.764-0.841)0.934 (0.914-0.955)0.9580.7440.7860.914
XGB + LSM0.844 (0.7815-0.898)0.977 (0.966-0.980)0.9850.7580.8370.929< 0.001
APRI0.715 (0.674-0.753)0.803 (0.765-0.841)0.9070.4020.7110.727< 0.001
FIB-40.734 (0.774-0.848)0.811 (0.774-0.848)0.8980.4670.7320.738< 0.001
ValidationXGB0.794 (0.765-0.862)0.917 (0.880-0.953)0.9250.6580.7560.884
XGB + LSM0.821 (0.755-0.880)0.970 (0.950-0.990)0.9540.7390.810.908< 0.001
APRI0.710 (0.646-0.769)0.737 (0.669-0.805)0.9170.3290.7150.684< 0.001
FIB-40.688 (0.622-0.748)0.752 (0.687-0.816)0.9120.1650.6810.765< 0.001