Copyright
©The Author(s) 2025.
World J Gastroenterol. Feb 28, 2025; 31(8): 102071
Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Table 1 Clinical baseline data and surgical information, n (%)
Variables | Total (n = 381) |
Age, median (IQR), years | 65 (57, 70) |
Sex: Female | 138 (36.2) |
BMI, mean ± SD, kg/m2 | 22.8 ± 3.3 |
Diabetes mellitus | 91 (23.9) |
Hypertension | 105 (27.6) |
CAD | 28 (7.4) |
Alcohol consumption | 66 (17.3) |
Smoking | 74 (19.4) |
Jaundice | 241 (63.3) |
COPD | 13 (3.4) |
ASA | |
I/II | 243 (63.8) |
III/IV | 138 (36.2) |
Pathology: PDAC/CP | 154 (40.4) |
MPDD, median (IQR), mm | 2.9 (1.7, 4.7) |
Surgical modality | |
PD | 229 (60.1) |
PPPD | 152 (39.9) |
Venous resection | 83 (21.8) |
Pancreatic texture | |
Firm | 194 (50.9) |
Soft | 187 (49.1) |
Pancreatic duct stent | |
No | 6 (1.6) |
Internal stent | 344 (90.3) |
External stent | 31 (8.1) |
surgery time, median (IQR), minute | 370 (306, 507) |
EBL, median (IQR), mL | 300 (200, 400) |
Table 2 Comparison of baseline preoperative and intraoperative characteristics in relation to postpancreatectomy acute pancreatitis, n (%)
Variables | Without PPAP (n = 293) | PPAP (n = 88) | P value |
Age, median (IQR), years | 65(58, 70) | 64 (55, 69) | 0.37 |
Sex, male | 187 (63.8) | 56 (63.6) | 1 |
BMI, mean ± SD, kg/m2 | 22.7 ± 3.3 | 23.4 ± 3.2 | 0.064 |
Diabetes mellitus | 73 (24.9) | 18 (20.5) | 0.473 |
Hypertension | 84 (28.7) | 21 (23.9) | 0.454 |
CAD | 23 (7.9) | 5 (5.7) | 0.652 |
Alcohol consumption | 49 (16.7) | 17 (19.3) | 0.687 |
Smoking | 53 (18.1) | 21 (23.9) | 0.295 |
Jaundice | 185 (63.1) | 56 (63.6) | 1 |
COPD (%) | 11 (3.8) | 2 (2.3) | 0.736 |
ASA, III/IV | 101 (34.5) | 37 (42.1) | 0.242 |
Pathology, PDAC/CP | 134 (45.7) | 20 (22.7) | < 0.001 |
MPDD, median (IQR), mm | 3.1 (1.9, 5.2) | 1.9 (1.3, 3.0) | < 0.001 |
Surgical modality, PPPD | 112 (38.2) | 40 (45.5) | 0.276 |
Venous resection | 62 (21.2) | 21 (23.9) | 0.695 |
Pancreatic texture, soft | 124 (42.3) | 63 (71.6) | < 0.001 |
Pancreatic duct stent, external stent | 19 (6.5) | 12 (13.6) | 0.094 |
Surgery time, median (IQR), minute | 360 (305, 508) | 393 (314, 491) | 0.3 |
EBL, median (IQR), mL | 300 (200, 400) | 400 (200, 500) | 0.04 |
Table 3 Comparison of postoperative events in relation to postpancreatectomy acute pancreatitis, n (%)
Variables | Without PPAP (n = 293) | PPAP (n = 88) | P value |
DFA on POD 1, median (IQR), U/L | 553 (82, 2726) | 4135 (1379, 8481) | < 0.001 |
DFA on POD 3, median (IQR), U/L | 145 (42, 791) | 2349 (627, 6153) | < 0.001 |
WBC on POD 1, median (IQR), 109/L | 12.4 (10.2, 15.0) | 13.6 (10.7, 16.9) | 0.058 |
WBC on POD 3, median (IQR), 109/L | 9.4 (7.0, 12.5) | 11.2 (8.7, 15.1) | < 0.001 |
CRP on POD 1, median (IQR), mg/L | 62.7 (43.2, 90.7) | 76.7 (49.8, 116.1) | 0.005 |
CRP on POD 3, median (IQR), mg/L | 101.3 (67.0, 142.3) | 153.3 (81.0, 201.1) | < 0.001 |
Serum AMY on POD 1, median (IQR), U/L | 110.5 (53.0, 249.3) | 312.0 (189.4, 508.3) | < 0.001 |
Serum AMY on POD 3, median (IQR), U/L | 30.0 (18.2, 59.0) | 95.0 (62.6, 149.0) | < 0.001 |
Drain removal time, median (IQR), days | 12 (9, 20) | 25 (14, 33) | < 0.001 |
Postoperative hospital stay, median (IQR), days | 15.0 (11, 21) | 23.5 (15, 33) | < 0.001 |
POPF | 43 (14.7) | 49 (55.7) | < 0.001 |
Grade C POPF | 4 (1.4) | 8 (9.1) | 0.001 |
DGE | 78 (26.6) | 34 (38.6) | 0.042 |
PPH | 21(7.2) | 18 (20.5) | 0.001 |
Interventional treatment | 26 (8.9) | 28 (31.8) | < 0.001 |
Biliary fistula | 7 (2.4) | 5 (5.7) | 0.229 |
Re-operation | 8 (2.7) | 11 (12.5) | 0.001 |
Organ failure | 1 (0.3) | 6 (6.8) | < 0.001 |
90-day mortality | 7 (2.4) | 7 (8.0) | 0.035 |
30-day readmission | 9 (3.1) | 6 (6.8) | 0.203 |
Table 4 Performance of different models for predicting postpancreatectomy acute pancreatitis
Model | Training AUC | Testing AUC | Specificity | Sensitivity | MCC | Kappa | NPV | PPV |
LR | 0.605 | 0.69 | 0.524 | 0.857 | 0.295 | 0.214 | 0.943 | 0.286 |
RF | 0.824 | 0.815 | 0.508 | 1 | 0.398 | 0.273 | 1 | 0.311 |
GBDT | 0.875 | 0.735 | 0.81 | 0.643 | 0.392 | 0.379 | 0.911 | 0.429 |
XGBoost | 0.871 | 0.706 | 0.762 | 0.714 | 0.392 | 0.365 | 0.923 | 0.4 |
LGBM | 0.87 | 0.73 | 0.746 | 0.714 | 0.375 | 0.345 | 0.922 | 0.385 |
CatBoost | 0.859 | 0.822 | 0.667 | 0.857 | 0.408 | 0.343 | 0.955 | 0.364 |
Table 5 Performance of category boosting model for predicting postpancreatectomy acute pancreatitis based on selected variables
Model | CatBoost |
Training AUC | 0.837 |
Testing AUC | 0.812 |
Specificity | 0.873 |
Sensitivity | 0.714 |
MCC | 0.535 |
Kappa | 0.529 |
NPV | 0.932 |
PPV | 0.556 |
- Citation: Ma JM, Wang PF, Yang LQ, Wang JK, Song JP, Li YM, Wen Y, Tang BJ, Wang XD. Machine learning model-based prediction of postpancreatectomy acute pancreatitis following pancreaticoduodenectomy: A retrospective cohort study. World J Gastroenterol 2025; 31(8): 102071
- URL: https://www.wjgnet.com/1007-9327/full/v31/i8/102071.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i8.102071