Ma JM, Wang PF, Yang LQ, Wang JK, Song JP, Li YM, Wen Y, Tang BJ, Wang XD. Machine learning model-based prediction of postpancreatectomy acute pancreatitis following pancreaticoduodenectomy: A retrospective cohort study. World J Gastroenterol 2025; 31(8): 102071 [DOI: 10.3748/wjg.v31.i8.102071]
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastroenterol. Feb 28, 2025; 31(8): 102071 Published online Feb 28, 2025. doi: 10.3748/wjg.v31.i8.102071
Table 1 Clinical baseline data and surgical information, n (%)
Variables
Total (n = 381)
Age, median (IQR), years
65 (57, 70)
Sex: Female
138 (36.2)
BMI, mean ± SD, kg/m2
22.8 ± 3.3
Diabetes mellitus
91 (23.9)
Hypertension
105 (27.6)
CAD
28 (7.4)
Alcohol consumption
66 (17.3)
Smoking
74 (19.4)
Jaundice
241 (63.3)
COPD
13 (3.4)
ASA
I/II
243 (63.8)
III/IV
138 (36.2)
Pathology: PDAC/CP
154 (40.4)
MPDD, median (IQR), mm
2.9 (1.7, 4.7)
Surgical modality
PD
229 (60.1)
PPPD
152 (39.9)
Venous resection
83 (21.8)
Pancreatic texture
Firm
194 (50.9)
Soft
187 (49.1)
Pancreatic duct stent
No
6 (1.6)
Internal stent
344 (90.3)
External stent
31 (8.1)
surgery time, median (IQR), minute
370 (306, 507)
EBL, median (IQR), mL
300 (200, 400)
Table 2 Comparison of baseline preoperative and intraoperative characteristics in relation to postpancreatectomy acute pancreatitis, n (%)
Variables
Without PPAP (n = 293)
PPAP (n = 88)
P value
Age, median (IQR), years
65(58, 70)
64 (55, 69)
0.37
Sex, male
187 (63.8)
56 (63.6)
1
BMI, mean ± SD, kg/m2
22.7 ± 3.3
23.4 ± 3.2
0.064
Diabetes mellitus
73 (24.9)
18 (20.5)
0.473
Hypertension
84 (28.7)
21 (23.9)
0.454
CAD
23 (7.9)
5 (5.7)
0.652
Alcohol consumption
49 (16.7)
17 (19.3)
0.687
Smoking
53 (18.1)
21 (23.9)
0.295
Jaundice
185 (63.1)
56 (63.6)
1
COPD (%)
11 (3.8)
2 (2.3)
0.736
ASA, III/IV
101 (34.5)
37 (42.1)
0.242
Pathology, PDAC/CP
134 (45.7)
20 (22.7)
< 0.001
MPDD, median (IQR), mm
3.1 (1.9, 5.2)
1.9 (1.3, 3.0)
< 0.001
Surgical modality, PPPD
112 (38.2)
40 (45.5)
0.276
Venous resection
62 (21.2)
21 (23.9)
0.695
Pancreatic texture, soft
124 (42.3)
63 (71.6)
< 0.001
Pancreatic duct stent, external stent
19 (6.5)
12 (13.6)
0.094
Surgery time, median (IQR), minute
360 (305, 508)
393 (314, 491)
0.3
EBL, median (IQR), mL
300 (200, 400)
400 (200, 500)
0.04
Table 3 Comparison of postoperative events in relation to postpancreatectomy acute pancreatitis, n (%)
Variables
Without PPAP (n = 293)
PPAP (n = 88)
P value
DFA on POD 1, median (IQR), U/L
553 (82, 2726)
4135 (1379, 8481)
< 0.001
DFA on POD 3, median (IQR), U/L
145 (42, 791)
2349 (627, 6153)
< 0.001
WBC on POD 1, median (IQR), 109/L
12.4 (10.2, 15.0)
13.6 (10.7, 16.9)
0.058
WBC on POD 3, median (IQR), 109/L
9.4 (7.0, 12.5)
11.2 (8.7, 15.1)
< 0.001
CRP on POD 1, median (IQR), mg/L
62.7 (43.2, 90.7)
76.7 (49.8, 116.1)
0.005
CRP on POD 3, median (IQR), mg/L
101.3 (67.0, 142.3)
153.3 (81.0, 201.1)
< 0.001
Serum AMY on POD 1, median (IQR), U/L
110.5 (53.0, 249.3)
312.0 (189.4, 508.3)
< 0.001
Serum AMY on POD 3, median (IQR), U/L
30.0 (18.2, 59.0)
95.0 (62.6, 149.0)
< 0.001
Drain removal time, median (IQR), days
12 (9, 20)
25 (14, 33)
< 0.001
Postoperative hospital stay, median (IQR), days
15.0 (11, 21)
23.5 (15, 33)
< 0.001
POPF
43 (14.7)
49 (55.7)
< 0.001
Grade C POPF
4 (1.4)
8 (9.1)
0.001
DGE
78 (26.6)
34 (38.6)
0.042
PPH
21(7.2)
18 (20.5)
0.001
Interventional treatment
26 (8.9)
28 (31.8)
< 0.001
Biliary fistula
7 (2.4)
5 (5.7)
0.229
Re-operation
8 (2.7)
11 (12.5)
0.001
Organ failure
1 (0.3)
6 (6.8)
< 0.001
90-day mortality
7 (2.4)
7 (8.0)
0.035
30-day readmission
9 (3.1)
6 (6.8)
0.203
Table 4 Performance of different models for predicting postpancreatectomy acute pancreatitis
Model
Training AUC
Testing AUC
Specificity
Sensitivity
MCC
Kappa
NPV
PPV
LR
0.605
0.69
0.524
0.857
0.295
0.214
0.943
0.286
RF
0.824
0.815
0.508
1
0.398
0.273
1
0.311
GBDT
0.875
0.735
0.81
0.643
0.392
0.379
0.911
0.429
XGBoost
0.871
0.706
0.762
0.714
0.392
0.365
0.923
0.4
LGBM
0.87
0.73
0.746
0.714
0.375
0.345
0.922
0.385
CatBoost
0.859
0.822
0.667
0.857
0.408
0.343
0.955
0.364
Table 5 Performance of category boosting model for predicting postpancreatectomy acute pancreatitis based on selected variables
Model
CatBoost
Training AUC
0.837
Testing AUC
0.812
Specificity
0.873
Sensitivity
0.714
MCC
0.535
Kappa
0.529
NPV
0.932
PPV
0.556
Citation: Ma JM, Wang PF, Yang LQ, Wang JK, Song JP, Li YM, Wen Y, Tang BJ, Wang XD. Machine learning model-based prediction of postpancreatectomy acute pancreatitis following pancreaticoduodenectomy: A retrospective cohort study. World J Gastroenterol 2025; 31(8): 102071