Copyright
©The Author(s) 2025.
World J Gastroenterol. Feb 7, 2025; 31(5): 101722
Published online Feb 7, 2025. doi: 10.3748/wjg.v31.i5.101722
Published online Feb 7, 2025. doi: 10.3748/wjg.v31.i5.101722
Table 1 Baseline demographics and clinical characteristics of patients with hepatocellular carcinoma in the training and validation cohorts, n (%)
Variables | Total (n = 808) | Training group (n = 539) | Validation group (n = 269) | P values |
Patients background | ||||
Gender, male/female | 602/206 | 399/140 | 203/66 | 0.721 |
Age, year (Q1, Q3) | 56 (50, 62) | 56 (50, 62) | 56 (50, 63) | 0.575 |
Cirrhosis | 665 (82.20) | 438 (81.26) | 227 (84.38) | 0.318 |
Decompensation | 445 (55.07) | 286 (53.09) | 159 (59.10) | 0.12 |
Smoking | 340 (42.07) | 215 (39.88) | 125 (46.46) | 0.087 |
Drinking | 334 (41.33) | 221 (41.00) | 113 (42.00) | 0.843 |
Family history of HCC | 80 (9.90) | 57 (10.57) | 23 (8.55) | 0.433 |
Diabetes | 176 (21.78) | 109 (20.22) | 67 (24.90) | 0.153 |
Hypertension | 223 (27.59) | 145 (26.90) | 78 (28.99) | 0.586 |
Antiviral | 477 (59.03) | 315 (58.44) | 162 (60.22) | 0.682 |
Ascites | 0.106 | |||
Mild ascites | 181 (22.40) | 111 (20.59) | 70 (26.02) | |
Severe ascites | 51 (6.31) | 40 (7.42) | 11 (4.08) | |
HE | 13 (1.61) | 7 (1.29) | 6 (2.23) | 0.377 |
UGIB | 32 (3.96) | 21 (3.89) | 11 (4.08) | 0.856 |
Laboratory parameters | ||||
ALT, U/L, (Q1, Q3) | 27.8 (19, 41.95) | 28 (19.1, 42.5) | 27.2 (18.9, 41) | 0.529 |
AST, U/L, (Q1, Q3) | 30.1 (22.8, 44.15) | 30.1 (23.1, 44.2) | 30.1 (22.5, 43.3) | 0.95 |
TBIL, μmol/L, (Q1, Q3) | 15.6 (10.8, 23) | 15.9 (11.1, 22.95) | 13.9 (10.3, 23.4) | 0.114 |
PLR, (Q1, Q3) | 80.5 (59.68, 111.43) | 82.02 (59.65, 112.63) | 79.01 (59.89, 107.34) | 0.352 |
NLR, (Q1, Q3) | 1.92 (1.4, 2.84) | 1.91 (1.4, 2.78) | 1.92 (1.4, 2.95) | 0.548 |
LMR, (Q1, Q3) | 3.63 (2.59, 4.83) | 3.61 (2.59, 4.72) | 3.67 (2.59, 5) | 0.48 |
ALBI | ||||
I | 369 (45.66) | 248 (46.01) | 121 (45.12) | 0.866 |
II | 387 (47.89) | 258 (47.86) | 129 (46.95) | |
III | 52 (6.43) | 33 (6.12) | 19 (7.06) | |
Child-Pugh | 0.233 | |||
Grade A | 656 (81.18) | 445 (82.56) | 211 (78.43) | |
Grade B | 152 (18.81) | 94 (17.43) | 58 (21.56) | |
CRP, mg/L | 4.2 (1.5, 12.55) | 4.2 (1.5, 12.1) | 4.5 (1.5, 13.28) | 0.665 |
ALB, g/L, (Q1, Q3) | 38.35 (33.27, 42.3) | 38.7 (33.45, 42.4) | 37.9 (33.1, 42.1) | 0.278 |
GLB, g/L, (Q1, Q3) | 30.2 (26.8, 34.23) | 30.1 (26.85, 34.1) | 30.3 (26.5, 34.8) | 0.929 |
LDH, U/L, (Q1, Q3) | 173.35 (149.88, 201.77) | 173.5 (149.8, 203.3) | 173.2 (150, 196.6) | 0.59 |
Cr, μmol/L, (Q1, Q3) | 0.76 (0.66, 0.87) | 0.76 (0.64, 0.87) | 0.77 (0.67, 0.9) | 0.076 |
HBV-DNA ≥ 250, IU/mL | 287 (35.51) | 205 (38.03) | 82 (30.48) | 0.05 |
Tumor-related indicators | ||||
AFP ≥ 400, ng/mL | 133 (16.36) | 90 (16.69) | 43 (15.98) | 0.875 |
Tumor size, ≥ 2 cm | 340 (42.07) | 232 (43.04) | 108 (40.14) | 0.478 |
Tumor multiplicity | 0.96 | |||
Solidary | 726 (89.85) | 485 (89.98) | 241 (89.59) | |
Multiple | 82 (10.14) | 54 (10.02) | 28 (10.41) | |
BCLC | 0.546 | |||
BCLC 0 | 43 (5.32) | 31 (5.75) | 12 (4.46) | |
BCLC A | 765 (94.67) | 508 (94.25) | 257 (95.54) | |
Etiology | ||||
HBV-infection | 630 (77.97) | 420 (77.92) | 210 (78.06) | 0.965 |
HCV-infection | 68 (8.41) | 47 (8.71) | 21 (7.80) | 0.759 |
AH | 71 (8.78) | 43 (7.97) | 28 (10.40) | 0.308 |
Other | 39 (4.82) | 29 (5.38) | 10 (3.71) | 0.387 |
Table 2 Comparison of the performance and discriminative ability between the artificial neural networks model and conventional models
Corhort | Models | 1-year AUROC (95%CI) | 3-year AUROC (95%CI) | 5-year AUROC (95%CI) | C-index |
Training | ANN | 0.92 (0.88-0.95) | 0.87 (0.84-0.91) | 0.85 (0.82-0.88) | 0.81 |
JIS | 0.77 (0.70-0.83) | 0.71 (0.65-0.78) | 0.65 (0.61-0.70) | 0.63 | |
Okuda | 0.61 (0.53-0.69) | 0.70 (0.65-0.75) | 0.66 (0.62-0.70) | 0.64 | |
CUPI | 0.75 (0.66-0.83) | 0.71 (0.63-0.87) | 0.73 (0.69-0.77) | 0.68 | |
CLIP | 0.71 (0.63-0.78) | 0.73 (0.68-0.78) | 0.70 (0.66-0.74) | 0.66 | |
Validation | ANN | 0.81 (0.71-0.91) | 0.79 (0.71-0.87) | 0.82 (0.74-0.85) | 0.78 |
JIS | 0.60 (0.50-0.73) | 0.66 (0.56-0.76) | 0.61 (0.54-0.68) | 0.61 | |
Okuda | 0.67 (0.55-0.80) | 0.69 (0.60-0.79) | 0.69 (0.63-0.76) | 0.63 | |
CUPI | 0.78 (0.71-0.85) | 0.75 (0.69-0.82) | 0.76 (0.70-0.82) | 0.68 | |
CLIP | 0.70 (0.59-0.81) | 0.71 (0.63-0.79) | 0.72 (0.66-0.78) | 0.66 |
- Citation: Zhang Y, Shi K, Feng Y, Wang XB. Machine learning model using immune indicators to predict outcomes in early liver cancer. World J Gastroenterol 2025; 31(5): 101722
- URL: https://www.wjgnet.com/1007-9327/full/v31/i5/101722.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i5.101722