Retrospective Cohort Study
Copyright ©The Author(s) 2025.
World J Gastroenterol. Apr 14, 2025; 31(14): 104280
Published online Apr 14, 2025. doi: 10.3748/wjg.v31.i14.104280
Table 1 Summaries of the fundamental information of enrolled subjects and the corresponding number of collected Raman spectra
Patient information
Number of patients
Number of spectra
Age< 60 years24
≥ 60 years66
GenderMale59
Female31
Test siteNeck2
Upper24
Middle40
Lower16
Histological gradingHealth30120
Low grade30120
High grade30120
Table 2 Analysis of peak positions and assignment in Raman spectra during low-health and high-low progressions
Progression type
Change direction
Raman shift, cm-1
Band assignments
Low-healthIncrease891Lauric acid
1078v(C-C) of lipids
1095DNA, symmetric PO, stretching vibration
1132Cytochrome c
1171Acetoacetate
1216Amide III and CH2 wagging
1295Amide III delta (CH)2
1369Thymine
1417CH2 stretch
1440Lipin
1596-1616Phenylalanine C = C
1618v(C = C) of porphyrins
High-lowDecrease891Lauric acid
1004vs(C-C) ring breathing of phenylalanine
1078v(C-C) of lipids
1095DNA, symmetric PO, stretching vibration
1132Cytochrome c
1171Acetoacetate
1295Amide III delta (CH)2
1315Glycerol
1369Thymine
1417CH2 stretch
1448-1468CH3 deformation
1618v(C = C) of porphyrins
Table 3 Results for the specificity, sensitivity, and F1 score achieved by the 1D-transformer model in the pathology grading task
Classification
Category
Specificity
Sensitivity
F1 score
Histologic gradingHealth95.099.1594.74
Low98.3383.1989.19
High96.6297.5295.55
Table 4 Results for the accuracy, specificity, sensitivity, and F1 score produced by each of the ten models in the pathology grading task
Classification
Model
Accuracy
Specificity
Sensitivity
F1 score
Histologic gradingModel 194.1297.0493.9493.89
Model 291.6795.8391.6891.77
Model 397.2298.6197.2297.22
Model 488.8994.4488.8988.57
Model 594.4497.2294.4494.41
Model 694.2997.1094.4494.41
Model 794.4497.2294.4494.30
Model 888.8994.4488.8988.30
Model 994.4497.2294.4494.30
Model 1094.5997.3394.6694.56
Table 5 The performance metrics
Algorithm types
Accuracy
Specificity
Sensitivity
F1 score
PLS-Transformer93.30 ± 2.5396.65 ± 1.2793.30 ± 2.5493.17 ± 2.67
PLS-ResNet1888.52 ± 5.4494.28 ± 2.7288.51 ± 5.5088.57 ± 5.38
PLS-LSTM80.18 ± 5.6090.06 ± 3.1180.09 ± 6.7978.80 ± 6.43
PLS-GRU88.58 ± 7.3994.22 ± 4.0288.47 ± 7.6387.87 ± 7.46
PLS-EfficientNet81.01 ± 6.1090.64 ± 3.3281.94 ± 5.9180.72 ± 5.64
PLS-DenseNet90.79 ± 3.9495.29 ± 2.1590.73 ± 4.0990.62 ± 3.68
PLS-SVM87.46 ± 7.5194.04 ± 2.8987.20 ± 7.1687.30 ± 7.20
PLS-XGB74.27 ± 5.8685.00 ± 4.0374.36 ± 5.0974.4 ± 5.5
Table 6 Analysis of peak positions and assignment in Raman spectra of health, low, and high tissues
Raman shift, cm-1
Intensity
Band assignment
891wLauric acid
1004wvs(C-C) ring breathing of phenylalanine
1078wv(C-C) of lipids
1095w, mDNA; symmetric PO, stretching vibration
1132mCytochrome c
1171w, mAcetoacetate
1216mAmide III and CH2 wagging
1295wAmide III delta (CH)2
1315mGlycerol
1369wThymine
1440wLipin
1448-1468wCH3 deformation