Copyright
©The Author(s) 2024.
World J Gastroenterol. Dec 28, 2024; 30(48): 5111-5129
Published online Dec 28, 2024. doi: 10.3748/wjg.v30.i48.5111
Published online Dec 28, 2024. doi: 10.3748/wjg.v30.i48.5111
Table 1 Experimental parameter settings
Parameter name | Parameter value |
Initial learning rate | 0.01 |
Learning rate float | 0.01 |
Epochs | 300 |
Batch size | 16 |
Optimizer | AdamW |
Weight_decay | 0.0005 |
Momentum | 0.937 |
Table 2 Training results of the YOLOv8 versions using our dataset
Model | Parameter (M) | mAP50 | mAP50:95 | GFLOPS | FPS |
YOLOv8n | 2.87 | 86.0 | 66.2 | 8.2 | 400.00 |
YOLOv8s | 10.62 | 86.1 | 67.6 | 28.7 | 283.03 |
YOLOv8m | 24.67 | 88.6 | 68.3 | 79.1 | 189.47 |
YOLOv8 L | 41.62 | 85.3 | 67.1 | 165.5 | 149.25 |
YOLOv8x | 65.01 | 83.2 | 64.1 | 258.2 | 114.94 |
Table 3 Training results of different detection models on the dataset
Table 4 Experimental results of different numbers of detection heads
Method | P2 | P3 | P4 | P5 | mAP50 | GFLOPS | FPS |
Method 1 | Y | N | N | N | 87.1 | 47.9 | 233.65 |
Method 2 | N | Y | N | N | 88.6 | 79.1 | 189.47 |
Method 3 | N | N | Y | N | 89.2 | 126.7 | 179.19 |
Method 4 | N | N | N | Y | 89.5 | 166.3 | 153.95 |
Table 5 Experimental results of different necks
Method | FPN | PANet | BiFPN | mAP50 | GFLOPS | FPS |
Method 1 | Y | N | N | 86.3 | 58.6 | 226.63 |
Method 2 | N | Y | N | 88.6 | 79.1 | 189.47 |
Method 3 | N | N | Y | 90.1 | 98.4 | 178.36 |
Table 6 Experimental results of different attention modules
Method | CBAM | SE | VIT | Swin Transformer | mAP50 | GFLOPS | FPS |
Method 1 | Y | N | N | N | 88.9 | 133.6 | 163.96 |
Method 2 | N | Y | N | N | 87.2 | 121.5 | 173.73 |
Method 3 | N | N | Y | N | 89.2 | 219.9 | 103.76 |
Method 4 | N | N | N | Y | 90.7 | 159.7 | 149.58 |
Table 7 Ablation experiment results
Method | p4 | BiFPN | Swin Transformer | mAP50 | GFLOPS | FPS |
Method 1 | N | N | N | 88.6 | 79.1 | 189.47 |
Method 2 | Y | N | N | 89.2 | 126.7 | 179.19 |
Method 3 | Y | Y | N | 90.6 | 138.4 | 183.35 |
Method 4 | Y | Y | Y | 91.5 | 203.6 | 129.70 |
- Citation: Xiao ZG, Chen XQ, Zhang D, Li XY, Dai WX, Liang WH. Image detection method for multi-category lesions in wireless capsule endoscopy based on deep learning models. World J Gastroenterol 2024; 30(48): 5111-5129
- URL: https://www.wjgnet.com/1007-9327/full/v30/i48/5111.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i48.5111