Copyright
©The Author(s) 2024.
World J Gastroenterol. Jan 14, 2024; 30(2): 170-183
Published online Jan 14, 2024. doi: 10.3748/wjg.v30.i2.170
Published online Jan 14, 2024. doi: 10.3748/wjg.v30.i2.170
Table 1 Training and test sets image classification and the number of each classification
Set | Type of CE | Type of pictures | ||||||||||||
N | P0Lk | P0Lz | P0X | P1E | P1U | P1P | P2U | P2P | P2V | B | I | Total | ||
Training set | PillCam | 14026 | 2086 | 1505 | 551 | 1851 | 3867 | 687 | 1564 | 689 | 930 | 1529 | 17935 | 47220 |
MiroCam | 13452 | 612 | 817 | 494 | 1091 | 2062 | 180 | 341 | 205 | 421 | 782 | 6897 | 27354 | |
Test set | PillCam | 9221 | 245 | 435 | 122 | 235 | 1261 | 119 | 2608 | 109 | 139 | 1703 | 8446 | 24643 |
MiroCam | 4518 | 112 | 418 | 153 | 68 | 415 | 68 | 1581 | 68 | 92 | 1181 | 3970 | 12644 |
Table 2 Comparison of sensitivity, specificity, and accuracy of physician and model-assisted reading for different types of image recognition
Type of CE | Mode of reading | Sensitivity, % | Specificity, % | Accuracy, % |
I | P | 95.96 | 98.10 | 97.39 |
M | 99.85 | 99.57 | 99.66 | |
N | P | 94.96 | 94.25 | 94.52 |
M | 98.84 | 99.77 | 99.43 | |
P0Lk | P | 84.31 | 99.89 | 99.75 |
M | 96.92 | 99.97 | 99.94 | |
P0Lz | P | 78.66 | 99.71 | 99.23 |
M | 97.30 | 99.90 | 99.83 | |
P0X | P | 65.45 | 99.87 | 99.62 |
M | 93.82 | 99.98 | 99.94 | |
P1E | P | 67.33 | 99.55 | 99.28 |
M | 91.75 | 99.96 | 99.90 | |
P1U | P | 74.88 | 99.68 | 98.57 |
M | 98.39 | 99.94 | 99.87 | |
P1P | P | 64.71 | 99.78 | 99.61 |
M | 94.12 | 99.94 | 99.91 | |
P2U | P | 98.35 | 99.94 | 99.76 |
M | 99.69 | 99.99 | 99.95 | |
P2P | P | 88.14 | 99.71 | 99.65 |
M | 100 | 99.96 | 99.96 | |
P2V | P | 52.38 | 99.92 | 99.62 |
M | 97.40 | 99.97 | 99.96 | |
B | P | 100 | 100 | 100 |
M | 100 | 100 | 100 |
Table 3 Effect of stage 1 multimodal module ablation experiments on the performance metrics of the algorithm
Method | Color channel module | Accuracy, % | Sensitivity, % | Specificity, % | |||
R | G | B | RGB | ||||
Method 1 | √ | × | × | × | 98.32 | 98.29 | 98.36 |
Method 2 | × | √ | × | × | 96.97 | 96.99 | 96.93 |
Method 3 | × | × | √ | × | 99.04 | 99.02 | 99.08 |
Method 4 | × | × | × | √ | 99.08 | 99.05 | 99.12 |
Table 4 Effect of stage 1 attention module ablation experiments on the performance metrics of the algorithm
Method | Attention module | Accuracy, % | Sensitivity, % | Specificity, % | ||
SA | CA | MHSA | ||||
Method 1 | √ | × | × | 98.79 | 98.75 | 98.86 |
Method 2 | × | √ | × | 98.82 | 98.66 | 99.06 |
Method 3 | × | × | √ | 99.08 | 99.05 | 99.12 |
Table 5 Effect of ablation experiments in stage 2 on algorithm performance metrics
Module | Accuracy, % | EER, % | AUC, % |
PN, √ | 98.96 | 0.24 | 98.86 |
PN, × | 96.38 | 0.29 | 95.02 |
ASPP, √ | 98.96 | 0.24 | 98.86 |
ASPP, × | 96.01 | 0.28 | 96.47 |
MHSA, √ | 98.96 | 0.24 | 98.86 |
MHSA, × | 96.22 | 0.29 | 95.68 |
Table 6 Effect of random number experiment on algorithm performance index in stage 2 feature erase module
Random number | Accuracy, % | EER, % | AUC, % |
001 | 97.91 | 0.29 | 98.49 |
010 | 97.92 | 0.28 | 98.47 |
100 | 97.91 | 0.29 | 98.50 |
011 | 98.58 | 0.24 | 98.63 |
101 | 98.37 | 0.25 | 98.66 |
110 | 98.27 | 0.25 | 98.67 |
111 | 98.96 | 0.24 | 98.86 |
Table 7 Comparison of available models
Ref. | Year of publication | Application | Algorithm | Sensitivity, % | Specificity, % | Accuracy, % |
Aoki et al[29] | 2019 | Erosion/ulcer | CNN system based on SSD | 88.2 | 90.9 | 90.8 |
Ding et al[22] | 2019 | Ulcer | ResNet-152 | 99.7 | 99.9 | 99.8 |
Bleeding | 99.5 | 99.9 | 99.9 | |||
Vascular lesion | 98.9 | 99.9 | 99.2 | |||
Aoki et al[30] | 2020 | Protruding lesion | ResNet-50 | 100 | 99.9 | 99.9 |
Bleeding | 96.6 | 99.9 | 99.9 | |||
Current study | 2023 | Ulcer( P1U + P2U ) | Improved ResNet-50 + YOLO-V5 | 99.7 | 99.9 | 99.9 |
Vascular lesion | 97.4 | 99.9 | 99.9 | |||
Protruding lesion (P1P + P2P) | 98.1 | 99.9 | 99.9 | |||
Bleeding | 100 | 100 | 100 |
- Citation: Zhang RY, Qiang PP, Cai LJ, Li T, Qin Y, Zhang Y, Zhao YQ, Wang JP. Automatic detection of small bowel lesions with different bleeding risks based on deep learning models. World J Gastroenterol 2024; 30(2): 170-183
- URL: https://www.wjgnet.com/1007-9327/full/v30/i2/170.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i2.170