Copyright
©The Author(s) 2024.
World J Gastroenterol. Mar 14, 2024; 30(10): 1377-1392
Published online Mar 14, 2024. doi: 10.3748/wjg.v30.i10.1377
Published online Mar 14, 2024. doi: 10.3748/wjg.v30.i10.1377
Table 1 Signature fingerprint of infrared spectra
Bands position (cm-1) | Assignments of group | Assignments of substance |
2925 | υas, CH3 | Lipid related |
2855 | υas, CH2 | Lipid related |
1740 | υC=O | Lipid |
1640 | Amide I | Protein |
1550 | Amide II | Protein |
1460 | δC-H | Lipid related |
1400 | δC-H, δC-O-H | Lipid related |
1305 | δC-H, δC-O-H | Undetermined |
1240 | υas, PO2- | Nucleic acid related |
1160 | υC-O, δC-O-H, δC-O-C | Carbohydrate related |
1120 | υC-O, δC-O-H, δC-O-C | Carbohydrate related |
1080 | υas, PO2- | Nucleic acid related |
Table 2 Sample set divisions of Crohn’s disease and intestinal tuberculosis
Sample set | CD | ITB | Total |
Training set | 79 | 66 | 145 |
Prediction set | 22 | 27 | 49 |
Table 3 Results of the XGBoost model
Group | True value | Predicted value | Accuracy (%) | |
ITB | CD | |||
Original spectral data | ITB | 17.0000 | 5.0000 | |
CD | 4.0000 | 23.0000 | ||
Specificity (%) | 0.8519 | |||
Sensitivity (%) | 0.7727 | |||
Accuracy (%) | 0.8163 | |||
First derivative spectral data | ITB | 20.0000 | 2.0000 | |
CD | 2.0000 | 25.0000 | ||
Specificity (%) | 0.9259 | |||
Sensitivity (%) | 0.9090 | |||
Accuracy (%) | 0.9184 | |||
Second derivative spectral data | ITB | 16.0000 | 6.0000 | |
CD | 1.0000 | 26.0000 | ||
Specificity (%) | 0.9630 | |||
Sensitivity (%) | 0.7270 | |||
Accuracy (%) | 0.8571 |
Table 4 Optimal parameters of the XGBoost model based on first-derivative spectral data
Parameters | Step length | Optimal range | AUC (%) | Accuracy (%) | ||
Optimal value | Test | Optimal value | Test | |||
Max_depth | 1.00 | (1, 50.0) | 3.0 | 79.9 | 4.0. | 74.5 |
N_estimators | 10.00 | -1500 | 71.0 | 80.3 | 81.0 | 74.4 |
Min_child_weight | 1.00 | (1, 30.0) | 4.0 | 82.1 | 4.0 | 76.0 |
Gamma | 1.00 | (0, 15.0) | 0 | 82.1 | 0 | 76.0 |
Subsample | 0.10 | (0, 1.1) | 1.0. | 82.1 | 1.0. | 76.0 |
Alpha | 0.10 | (0, 10.0) | 0.3 | 82.0 | 2.8 | 75.9 |
Learning_rate | 0.01 | (0, 0.2) | 0.1 | 82.0 | 0.1 | 75.2 |
- Citation: Li YP, Lu TY, Huang FR, Zhang WM, Chen ZQ, Guang PW, Deng LY, Yang XH. Differential diagnosis of Crohn’s disease and intestinal tuberculosis based on ATR-FTIR spectroscopy combined with machine learning. World J Gastroenterol 2024; 30(10): 1377-1392
- URL: https://www.wjgnet.com/1007-9327/full/v30/i10/1377.htm
- DOI: https://dx.doi.org/10.3748/wjg.v30.i10.1377