Copyright
©The Author(s) 2023.
World J Gastroenterol. Dec 28, 2023; 29(48): 6198-6207
Published online Dec 28, 2023. doi: 10.3748/wjg.v29.i48.6198
Published online Dec 28, 2023. doi: 10.3748/wjg.v29.i48.6198
Table 1 Baseline characteristics of development and test sets
NBI image number | Training set, n = 771 | Label balance, n = 1187 | Valid set, n = 193 | Test set, n = 160 | ||||
n | % | n | % | n | % | n | % | |
No Barrett’s esophagus | 563 | 73.02 | 563 | 47.43 | 141 | 73.06 | 90 | 56.25 |
Barrett’s esophagus | 208 | 26.98 | 624 | 52.57 | 52 | 26.94 | 70 | 43.75 |
Table 2 Comparison of performance using different pretrained models
Pre-trained model | Training | Validation | Test | ||||||
ACC | SEN | SPE | ACC | SEN | SPE | ACC | SEN | SPE | |
EfficientNetV2B1 | 0.9196 | 0.8702 | 0.9378 | 0.7876 | 0.6346 | 0.8440 | 0.7625 | 0.6857 | 0.8222 |
EfficientNetV2B2 | 0.9702 | 0.9663 | 0.9716 | 0.8497 | 0.7500 | 0.8865 | 0.8500 | 0.8286 | 0.8667 |
EfficientNetV2B3 | 0.9170 | 0.8798 | 0.9307 | 0.7824 | 0.6154 | 0.8440 | 0.8125 | 0.7429 | 0.8667 |
ResNet50 | 0.8962 | 0.7885 | 0.9361 | 0.8290 | 0.5577 | 0.9291 | 0.7063 | 0.5429 | 0.8333 |
DenseNet201 | 0.8755 | 0.8173 | 0.8970 | 0.7772 | 0.5577 | 0.8582 | 0.7312 | 0.6143 | 0.8222 |
VGG16 | 0.2698 | 1.0000 | 0.0000 | 0.2694 | 1.0000 | 0.0000 | 0.4375 | 1.0000 | 0.0000 |
Table 3 Confusion matrices
Confusion matrices | Predicted class | ||||||
Training, n = 771 | Validation, n = 193 | Test, n = 160 | |||||
BE | No BE | BE | No BE | BE | No BE | ||
Actual class | BE | 206 | 2 | 50 | 2 | 66 | 4 |
No BE | 2 | 561 | 3 | 138 | 5 | 85 |
Table 4 A comparative summary of the state-of-the-art approaches for the binary classification of Barrett’s esophagus
Ref. | Validation (train:valid:test) | Valid | Test |
Ebigbo et al[33], 2020 | Holdout; Image (129:N/A:62); Test patients:14 | ACC: N/A | ACC: 89.9% |
AUC: N/A | AUC: N/A | ||
SEN: N/A | SEN: 83.7% | ||
SPE: N/A | SPE: 100.0% | ||
PPV: N/A | PPV: N/A | ||
NPV: N/A | NPV: N/A | ||
Hussein et al[26], 2022 | Holdout; Video (64:11:44); Patients: 118 | ACC: N/A | ACC: N/A |
AUC: N/A | AUC: 93% | ||
SEN: N/A | SEN: 91% | ||
SPE: N/A | SPE: 79% | ||
PPV: N/A | PPV: N/A | ||
NPV: N/A | NPV: N/A | ||
Abdelrahim et al[25], 2023 | Holdout; Image (816:471:N/A); Video (161:N/A:75); Case (161:34:75) | ACC: 94.7% | ACC: 92.0% |
AUC: 0.898 | AUC: 0.964 | ||
SEN: 95.3% | SEN: 93.8% | ||
SPE: 94.5% | SPE: 90.7% | ||
PPV: 83.6% | PPV: 88.2% | ||
NPV: 98.6% | NPV: 95.1% | ||
Our approach, 2023 | Holdout image; Image (771:193:160); Case (579:145:86) | ACC: 97.41% | ACC: 94.37% |
AUC: 97.01% | AUC: 94.37% | ||
SEN: 96.15% | SEN: 94.29% | ||
SPE: 97.87% | SPE: 94.44% | ||
PPV: 94.00% | PPV: 92.96% | ||
NPV: 98.57% | NPV: 95.51% |
- Citation: Tsai MC, Yen HH, Tsai HY, Huang YK, Luo YS, Kornelius E, Sung WW, Lin CC, Tseng MH, Wang CC. Artificial intelligence system for the detection of Barrett’s esophagus. World J Gastroenterol 2023; 29(48): 6198-6207
- URL: https://www.wjgnet.com/1007-9327/full/v29/i48/6198.htm
- DOI: https://dx.doi.org/10.3748/wjg.v29.i48.6198