Copyright
©The Author(s) 2022.
World J Gastroenterol. Jun 28, 2022; 28(24): 2721-2732
Published online Jun 28, 2022. doi: 10.3748/wjg.v28.i24.2721
Published online Jun 28, 2022. doi: 10.3748/wjg.v28.i24.2721
Table 1 Baseline characteristics of patients in entire cohort
Variable | Non-PEB, n = 5304 | PEB, n = 325 | P value1 |
Age2 | 64 ± 10 | 63 ± 11 | 0.065 |
Sex | 0.001 | ||
Female | 1245 (23.5) | 49 (15.1) | |
Male | 4059 (76.5) | 276 (84.9) | |
Hypertension | 1413 (26.6) | 120 (36.9) | < 0.001 |
Diabetes mellitus | 936 (17.6) | 74 (22.8) | 0.024 |
Liver cirrhosis | 93 (1.8) | 4 (1.2) | 0.629 |
Chronic kidney disease | 299 (5.6) | 33 (10.2) | 0.001 |
Aspirin | 515 (9.7) | 42 (12.9) | 0.074 |
P2Y12RA | 181 (3.4) | 23 (7.1) | 0.001 |
Warfarin | 22 (0.4) | 7 (2.2) | < 0.001 |
DOAC | 31 (0.6) | 6 (1.8) | 0.017 |
Cilostazol | 47 (0.9) | 3 (0.9) | 1.000 |
NSAIDs | 28 (0.5) | 3 (0.9) | 0.583 |
Preprocedure management of AT | < 0.001 | ||
No indication | 4605 (86.8) | 264 (81.2) | |
Interruption | 676 (12.7) | 53 (16.3) | |
Replacement or heparin bridge | 23 (0.4) | 8 (2.5) | |
Tumor | |||
Multiple | 284 (5.4) | 28 (8.6) | 0.018 |
Location | < 0.001 | ||
Upper | 433 (8.2) | 22 (6.8) | |
Middle | 1728 (32.6) | 157 (48.3) | |
Lower | 3143 (59.3) | 146 (44.9) | |
Size2, mm | 17 ± 10 | 21 ± 13 | < 0.001 |
Undifferentiated type | 125 (2.4) | 7 (2.2) | 0.963 |
Piecemeal resection | 64 (1.2) | 4 (1.2) | 1.000 |
Laboratory data | |||
Albumin2, g/dL | 4.3 ± 0.3 | 4.4 ± 0.4 | 0.345 |
INR2 | 1.0 ± 0.1 | 1.0 ± 0.1 | 0.106 |
Table 2 Logistic regression analysis for predictors of bleeding after endoscopic submucosal dissection in development set
Variables | Multivariable | ||||
OR | 95%CI | P value | ß regression coefficient | ||
Age | 0.98 | 0.96–0.99 | 0.001 | -0.024 | |
Sex | Female/male | 1.54 | 1.09–2.19 | 0.015 | 0.435 |
Hypertension | No/yes | 1.35 | 1.00–1.82 | 0.049 | 0.299 |
Diabetes mellitus | No/yes | 1.27 | 0.92–1.75 | 0.145 | 0.238 |
Liver cirrhosis | No/yes | 0.59 | 0.18–1.95 | 0.385 | -0.532 |
Chronic kidney disease | No/yes | 1.78 | 1.12–2.84 | 0.015 | 0.578 |
Aspirin | No/yes | 1.51 | 0.62–3.69 | 0.363 | 0.414 |
P2Y12RA | No/yes | 2.26 | 1.05–4.88 | 0.037 | 0.818 |
Warfarin | No/yes | 1.51 | 0.28–8.07 | 0.629 | 0.413 |
DOAC | No/yes | 3.24 | 0.76–13.82 | 0.113 | 1.174 |
Cilostazol | No/yes | 1.35 | 0.35–5.18 | 0.662 | 0.300 |
NSAIDs | No/yes | 2.65 | 0.77–9.14 | 0.124 | 0.973 |
Preprocedure management of AT | No indication | 1 | |||
Interruption | 0.63 | 0.24–1.67 | 0.353 | -0.464 | |
Replacement orHeparin bridge | 3.32 | 0.47–23.60 | 0.231 | 1.199 | |
Multiple | No/yes | 1.48 | 0.92–2.38 | 0.104 | 0.393 |
Location | Upper | 1 | |||
Middle | 1.97 | 1.14–3.41 | 0.015 | 0.680 | |
Lower | 1.11 | 0.64–1.91 | 0.711 | 0.103 | |
Size | 1.04 | 1.03–1.05 | < 0.001 | 0.036 | |
Undifferentiated type | No/yes | 0.56 | 0.20–1.57 | 0.271 | -0.579 |
Piecemeal | No/yes | 0.98 | 0.30–3.22 | 0.976 | -0.019 |
Albumin, g/dL | 1.33 | 0.89–2.00 | 0.168 | 0.286 | |
INR | 2.04 | 0.37–11.08 | 0.410 | 0.711 |
Table 3 Utility of deep learning model and clinical model
Deep learning model | Clinical model | P value | |
Sensitivity (%) | 64.3 (45.8–84.1) | 69.6 (54.2–80.8) | |
Specificity (%) | 74.0 (50.6–89.2) | 71.0 (68.5–79.5) | |
PPV (%) | 11.4 (7.4–18.1) | 11.1 (8.0–15.4) | |
NPV (%) | 97.5 (96.4–98.7) | 97.8 (96.6–98.7) | |
AUC (95%CI) | 0.71 (0.63–0.78) | 0.70 (0.62–0.77) | 0.730 |
Table 4 Decile of risk probability based on deep learning model and clinical model
Decile | Risk categories | Deep learning | Clinical model | ||||||
Score1 | Patients | Bleeding | Rate (%) | Score1 | Patients | Bleeding | Rate (%) | ||
Development set | |||||||||
1 | Low | 25.7 | 451 | 11 | 2.4 | 8.4 | 451 | 12 | 2.6 |
2 | 29.1 | 451 | 15 | 3.3 | 12.2 | 451 | 15 | 3.3 | |
3 | 32.5 | 451 | 6 | 1.3 | 12.4 | 451 | 12 | 2.6 | |
4 | 35.9 | 450 | 17 | 3.8 | 12.7 | 450 | 20 | 4.4 | |
5 | Intermediate | 40.2 | 450 | 27 | 6.0 | 14.8 | 450 | 34 | 7.6 |
6 | 45.3 | 450 | 29 | 6.4 | 16.6 | 450 | 15 | 3.3 | |
7 | 50.8 | 450 | 36 | 8.0 | 23.3 | 450 | 24 | 5.3 | |
8 | 57.5 | 450 | 24 | 5.3 | 24.6 | 450 | 32 | 7.1 | |
9 | High | 67.2 | 450 | 41 | 9.1 | 31.0 | 450 | 54 | 12.0 |
10 | 197.0 | 450 | 63 | 14.0 | 122.0 | 450 | 51 | 11.3 | |
Validation set | |||||||||
Low | 35.9 | 411 | 9 | 2.2 | 12.7 | 956 | 38 | 4.0 | |
Intermediate | 57.5 | 466 | 18 | 3.9 | 24.5 | 137 | 12 | 8.8 | |
High | 147.0 | 249 | 29 | 11.6 | 155.0 | 33 | 6 | 18.2 |
- Citation: Na JE, Lee YC, Kim TJ, Lee H, Won HH, Min YW, Min BH, Lee JH, Rhee PL, Kim JJ. Utility of a deep learning model and a clinical model for predicting bleeding after endoscopic submucosal dissection in patients with early gastric cancer. World J Gastroenterol 2022; 28(24): 2721-2732
- URL: https://www.wjgnet.com/1007-9327/full/v28/i24/2721.htm
- DOI: https://dx.doi.org/10.3748/wjg.v28.i24.2721