Retrospective Cohort Study
Copyright ©The Author(s) 2022.
World J Gastroenterol. Jun 28, 2022; 28(24): 2721-2732
Published online Jun 28, 2022. doi: 10.3748/wjg.v28.i24.2721
Table 1 Baseline characteristics of patients in entire cohort
Variable
Non-PEB, n = 5304
PEB, n = 325
P value1
Age264 ± 1063 ± 110.065
Sex0.001
Female1245 (23.5)49 (15.1)
Male4059 (76.5)276 (84.9)
Hypertension1413 (26.6)120 (36.9)< 0.001
Diabetes mellitus936 (17.6)74 (22.8)0.024
Liver cirrhosis93 (1.8)4 (1.2)0.629
Chronic kidney disease299 (5.6)33 (10.2)0.001
Aspirin515 (9.7)42 (12.9)0.074
P2Y12RA181 (3.4)23 (7.1)0.001
Warfarin22 (0.4)7 (2.2)< 0.001
DOAC31 (0.6)6 (1.8)0.017
Cilostazol47 (0.9)3 (0.9)1.000
NSAIDs28 (0.5)3 (0.9)0.583
Preprocedure management of AT< 0.001
No indication4605 (86.8)264 (81.2)
Interruption676 (12.7)53 (16.3)
Replacement or heparin bridge23 (0.4)8 (2.5)
Tumor
Multiple 284 (5.4)28 (8.6)0.018
Location< 0.001
Upper433 (8.2)22 (6.8)
Middle1728 (32.6)157 (48.3)
Lower3143 (59.3)146 (44.9)
Size2, mm17 ± 1021 ± 13< 0.001
Undifferentiated type125 (2.4)7 (2.2)0.963
Piecemeal resection64 (1.2)4 (1.2)1.000
Laboratory data
Albumin2, g/dL4.3 ± 0.34.4 ± 0.40.345
INR21.0 ± 0.11.0 ± 0.10.106
Table 2 Logistic regression analysis for predictors of bleeding after endoscopic submucosal dissection in development set
VariablesMultivariable
OR
95%CI
P value
ß regression coefficient
Age0.980.96–0.990.001-0.024
SexFemale/male1.541.09–2.190.0150.435
HypertensionNo/yes1.351.00–1.820.0490.299
Diabetes mellitusNo/yes1.270.92–1.750.1450.238
Liver cirrhosisNo/yes0.590.18–1.950.385-0.532
Chronic kidney diseaseNo/yes1.781.12–2.840.0150.578
AspirinNo/yes1.510.62–3.690.3630.414
P2Y12RANo/yes2.261.05–4.880.0370.818
Warfarin No/yes1.510.28–8.070.6290.413
DOACNo/yes3.240.76–13.820.1131.174
CilostazolNo/yes1.350.35–5.180.6620.300
NSAIDsNo/yes2.650.77–9.140.1240.973
Preprocedure management of ATNo indication1
Interruption0.630.24–1.670.353-0.464
Replacement orHeparin bridge3.320.47–23.600.2311.199
MultipleNo/yes1.480.92–2.380.1040.393
LocationUpper1
Middle1.971.14–3.410.0150.680
Lower1.110.64–1.910.7110.103
Size1.041.03–1.05< 0.0010.036
Undifferentiated typeNo/yes0.560.20–1.570.271-0.579
Piecemeal No/yes0.980.30–3.220.976-0.019
Albumin, g/dL1.330.89–2.000.1680.286
INR2.040.37–11.080.4100.711
Table 3 Utility of deep learning model and clinical model

Deep learning model
Clinical model
P value
Sensitivity (%)64.3 (45.8–84.1)69.6 (54.2–80.8)
Specificity (%)74.0 (50.6–89.2)71.0 (68.5–79.5)
PPV (%)11.4 (7.4–18.1)11.1 (8.0–15.4)
NPV (%)97.5 (96.4–98.7)97.8 (96.6–98.7)
AUC (95%CI)0.71 (0.63–0.78)0.70 (0.62–0.77)0.730
Table 4 Decile of risk probability based on deep learning model and clinical model
DecileRisk categoriesDeep learning
Clinical model
Score1
Patients
Bleeding
Rate (%)
Score1
Patients
Bleeding
Rate (%)
Development set
1Low 25.7451112.48.4451122.6
229.1451153.312.2451153.3
332.545161.312.4451122.6
435.9450173.812.7450204.4
5Intermediate40.2450276.014.8450347.6
645.3450296.416.6450153.3
750.8450368.023.3450245.3
857.5450245.324.6450327.1
9High67.2450419.131.04505412.0
10197.04506314.0122.04505111.3
Validation set
Low35.941192.212.7956384.0
Intermediate57.5466183.924.5137128.8
High 147.02492911.6155.033618.2