Copyright
©The Author(s) 2021.
World J Gastroenterol. Nov 14, 2021; 27(42): 7247-7270
Published online Nov 14, 2021. doi: 10.3748/wjg.v27.i42.7247
Published online Nov 14, 2021. doi: 10.3748/wjg.v27.i42.7247
AI | Example of producing bacteria | QS system | Bacterial QS-regulated processes | Ref. | |
Gram + | AI peptide | Staphylococcus aureus | agr | Virulence | Novick et al[155] |
Listeria monocytogenes | agr | Virulence | Autret et al[156] | ||
Clostridium perfringens | agr | Virulence | Ohtani et al[157] | ||
Enterococcus faecalis | FsR | Virulence | Sifri et al[158] | ||
Bacillus subtilis | com | Competence | Magnuson et al[159] | ||
γ-butyrolactone | Streptomyces genus | scb | Antibiotics | Takano et al[13] | |
scg | Metabolism | Du et al[14] | |||
Gram - | AI-1 (acyl-homoserine lactones) | Vibrio fischeri | LuxI/LuxR | Luminescence | Engebrecht et al[16] |
Vibrio harveyi | LuxLM/LuxN | Luminescence | Mok et al[160] | ||
Virulence | Waters and Bassler[161] | ||||
Pseudomonas aeruginosa | LasI/LasR | Virulence and biofilm | Gambello and Iglewski[162], Gambello et al[163], Winson et al[164], and Chapon-Hervé et al[165] | ||
RhlI/RhlR | |||||
PQS | Pseudomonas aeruginosa | PqsABCD/PqsR | QS regulation | Pesci et al[166] | |
Pyocyanin | Gallagher et al[167] | ||||
Iron homeostasis | Bredenbruch et al[168] and Diggle et al[169] | ||||
Virulence | Gallagher et al[167] and Cao et al[170] | ||||
Biofilm | Diggle et al[171] | ||||
IQS | Pseudomonas aeruginosa | AmbBCDE/IqsR | Response to stress | Lee et al[172] | |
CAI | Vibrio (cholerae) | CqsA/CqsS | Virulence | Ng et al[173] | |
AI-3 | EHEC O157:H7 | Qse/QseBC | Attachment-effacement | Sperandio et al[19], Walters et al[21], and Kim et al[22] | |
EPEC O26:H11 | Qse/unknown | Unknown | Kim et al[22], and Kaper and Sperandio[40] | ||
AIEC LF82 | Qse/unknown | Unknown | Kim et al[22] | ||
Escherichia coli MG1655 | Unknown | Unknown | Kim et al[22] | ||
Escherichia coli BW25113 | Unknown | Unknown | Kim et al[22] | ||
Salmonella enterica | Qse/unknown | Unknown | Kim et al[22], Kaper and Sperandio[40], and Walters and Sperandio[174] | ||
Shigella flexneri | Qse/unknown | Unknown | Kim et al[22], Kaper and Sperandio[40], and Walters and Sperandio[174] | ||
Yersinia sp. | Qse/unknown | Unknown | Kim et al[22], Kaper and Sperandio[40], and Walters and Sperandio[174] | ||
Gram + and - | AI-2 | Vibrio harveyi | LuxS/LuxPQ | Bioluminescence, TSS, protease | Surette et al[24], Mok et al[160], and Schauder et al[175] |
Vibrio cholerae | LuxS/LuxPQ | Virulence and Biofilm | Schauder et al[175], Zhu et al[176], and Hammer and Bassler[177] | ||
Enterococcus faecalis | LuxS/LuxPQ | Unknown | Surette et al[24], and Schauder et al[175] | ||
EHEC | LuxS/LsrB (?) | Attachment-effacement | Schauder et al[175], and Bansal et al[178] | ||
Salmonella enterica | LuxS/LsrB | Pathogenicity and invasion | Miller et al[26], Schauder et al[175], and Choi et al[179] |
QS molecule | Effects | Ref. |
Effects on the intestinal epithelial migration | ||
3-oxo-C12-HSL | Increased migration at low concentrations (1.5-12 μmol/L) vs inhibition at 200 μmol/L | Karlsson et al[72] |
Interaction with IQGAP1 and increase in Rac1/Cdc42 (1.5-200 μmol/L) | Karlsson et al[72] | |
Effects on the intestinal epithelial permeability and intercellular junctions | ||
3-oxo-C12-HSL | Increased permeability to ions and macromolecules (100-400 μmol/L) | Eum et al[55], Vikström et al[58-60], and Aguanno et al[61] |
Activation of p38 and p42/44 and calcium signaling (100-200 μmol/L) | Vikström et al[58-60] | |
Decreased expression levels of tight junction genes (100-400 μmol/L); Disassembly of tight and adherens junctions (modification of their phosphorylation status and involvement of MMP-2 and -3) | Eum et al[55], Vikström et al[58-60], and Aguanno et al[61] | |
Decreased levels of tight junction proteins occludin and tricellulin (100-400 μmol/L) | Eum et al[55] | |
Decreased protein levels of extracellular matrix and tight junction proteins (400 μmol/L) | Tao et al[62] | |
3-oxo-C12:2-HSL | No deleterious effects on permeabilityProtection of tight junction integrity and maintenance of junctional complexes at the plasma membrane under pro-inflammatory conditions | Landman et al[39] and Aguanno et al[61] |
3-oxo-C14-HSL | Decreased protein levels of extracellular matrix and tight junction proteins (400 μmol/L) | Tao et al[62] |
Indole and indole derivatives | Decreased permeability to ions and increased expression of genes coding tight junction and cytoskeleton proteins | Bansal et al[76] and Shimada et al[77] |
Decreased permeability to macromolecules | Venkatesh et al[79] | |
Increased transcripts levels of genes coding tight junction proteins | Shin et al[78] | |
Effects on the mucus layer components | ||
3-oxo-C12-HSL | Decreased MUC3 mRNA levels (30 μmol/L) | Taguchi et al[70] |
Decrease in Muc2 production in goblet cell-like cell line (100 μmol/L) vs increase in colonic cell line (400 μmol/L) | Tao et al[67] | |
Indole | Increased expression of genes involved in the production of mucins | Bansal et al[76] |
Effects on intestinal epithelial cell viability | ||
3-oxo-C12-HSL | Mitochondrial dysfunction and induction of apoptosis in goblet cell-like cell line (100 μmol/L) and in colonic cell line (30-100 μmol/L) | Tao et al[67-69], and Taguchi et al[70] |
Induction of apoptosis, mitochondrial dysfunction, oxidative stress and blocking of cell cycle (400 μmol/L) | Tao et al[62] | |
3-oxo-C14-HSL | Induction of apoptosis, mitochondrial dysfunction, oxidative stress and blocking of cell cycle (400 μmol/L) | Eum et al[55], Vikström et al[58-60], Aguanno et al[61], and Tao et al[62] |
CSF | Reduction of oxidative stress-induced cell death and loss of the epithelial barrier (involving HSP27 and p38/MAPK pathway) | Fujiya et al[74] |
Cell type | QS molecule | Effects | Ref. |
Effects on innate immune cells | |||
Macrophages | 3-oxo-C12-HSL | Anti-inflammatory effects on IL-12 and TNF-α (0.1-100 μmol/L) | Telford et al[94] |
Increased TLR2 and TLR4 expression and decreased TNF-α production (1-100 μmol/L) | Bao et al[180] | ||
Pro-apoptotic effects (12-50 μmol/L) | Tateda et al[102] | ||
Increased phagocytosis (100 μmol/L) | Vikström et al[107] | ||
NF-κB inhibition (4.7 μmol/L) | Kravchenko et al[104] | ||
Dose-dependent anti-inflammatory effects (1-50 μmol/L) | Kravchenko et al[105] | ||
Involvement in p38/MAPK signaling (1-100 μmol/L) | Kravchenko et al[105], Vikström et al[107], Glucksam-Galnoy et al[181] | ||
Activation of the Unfolded Protein Response (6.25-100 μmol/L) | Zhang et al[182] | ||
Change in cell volume and shape (10-50 μmol/L) | Holm et al[183] | ||
Indole derivatives | Prevents the induction of pro-inflammatory cytokines | Krishnan et al[184] | |
AI-2 | Induction of the expression of cytokines, chemokines and TNFSF9 | Li et al[41] | |
Monocytes | AI-3 and analogues | Increase in IL-8 secretion | Kim et al[22] |
Dendritic cells | 3-oxo-C12-HSL | Pro-apoptotic effects (100 μmol/L) | Boontham et al[185] |
No effect on IL-10 secretion (5-30 μmol/L) | Skindersoe et al[100] | ||
Increased IL-10 production (5-100 μmol/L) | Li et al[99] | ||
Decreased IL-12 secretion (5-100 μmol/L) | Li et al[99] and Skindersoe et al[100] | ||
Increased induction of Treg (5-100 μmol/L) | Li et al[99] | ||
Neutrophils | 3-oxo-C12-HSL | Chemoattraction (0.01-100 μmol/L) | Karlsson et al[186] and Zimmermann et al[187] |
Activation of MAPK signaling (12-50 μmol/L) | Tateda et al[102] and Singh et al[188] | ||
Increased phagocytosis (10 μmol/L) | Wagner et al[189] | ||
Pro-apoptotic effects (12-50 μmol/L) | Tateda et al[102] | ||
Effects on adaptive immune cells | |||
T cells | 3-oxo-C12-HSL | Inhibition of proliferation and activation (0.1-100 μmol/L) | Telford et al[94], Boontham et al[185], Gupta et al[190], and Hooi et al[191] |
Activation of naïve T cells towards Th1 phenotype (5 μmol/L) | Smith et al[95] | ||
Decreased secretion of IL-4 and IFN-γ (5 μmol/L) | Ritchie et al[96] | ||
Induction of apoptosis via the mitochondria pathway (100 μmol/L) | Jacobi et al[101] | ||
Induction of Treg (1-50 μmol/L) | Li et al[99] | ||
Indole derivatives | Re-programming into tolerogenic T cells | Cervantes-Barragan et al[192] | |
Promotion of differentiation towards a regulatory type 1 phenotype | Aoki et al[193] | ||
B cells | 3-oxo-C12-HSL | Modulation of immunoglobulin production (0.1-100 μmol/L) | Telford et al[94] and Ritchie et al[194] |
ILC | Indole derivatives | Promotion of IL-22 production | Zelante et al[83] |
Effects on epithelial cells | |||
Pulmonary tract epithelial cells | 3-oxo-C12-HSL | Induction of IL-8 production and NF-B activation (100 μmol/L) | Smith et al[195] |
Increased expression levels of pro-inflammatory cytokines | Jahoor et al[115] | ||
Intestinal epithelial cells | 3-oxo-C12-HSL | Mitigation (1-10 μmol/L) or aggravation (> 50 μmol/L) of IL-8 expression induction | Peyrottes et al[92] |
3-oxo-C12:2-HSL | Attenuation of the induction of IL-8 expression (5-50 μmol/L) | Landman et al[39] |
- Citation: Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27(42): 7247-7270
- URL: https://www.wjgnet.com/1007-9327/full/v27/i42/7247.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i42.7247