Minireviews
Copyright ©The Author(s) 2021.
World J Gastroenterol. Aug 7, 2021; 27(29): 4802-4817
Published online Aug 7, 2021. doi: 10.3748/wjg.v27.i29.4802
Table 1 Colorectal polyp detection
Ref.
Study design
Algorithm type
Dataset
Results
Karkanis et al[8]RetrospectiveCADe (Wavelet Decomposition)180 imagesSensitivity: 93.6%
Specificity: 99.3%
Urban et al[2]RetrospectiveCADe (DCNN)8461 images &20 colonoscopy videosAccuracy: 96.4%
False Positive: 7%
Klare et al[12]ProspectiveIn vivoCADe 55 colonoscopiesADR of: CAD 29.1% and Endoscopist 30.9%
Wang et al[5]Non-blinded RCTCADe using Shanghai Wision Al Co. Ltd. (DCNN)Randomized 522 patients to CADe and 536 to control groupADR of CAD 29.1% vs control 20.3%
Wang et al[4]Double blinded RCTCADe using EndoScreener (DCNN)Randomized 484 patients to CAD and 478 to sham systemADR of CAD 34% vs control 28%
Gong et al[13]Partially blinded RCTCADe using ENDOANGEL (DCNN)Randomized 355 patients to CAD and 349 to controlADR of CAD 16% vs control 8%
Repici et al[14] Partially-blinded RCTCADe using GI-Genius (CNN)Randomized 341 patients to CAD and 344 to controlADR of CAD 54.8% vs control 40.4%
Liu et al[15]Non-blinded RCTCADe using Henan Xuanweitang Medical Information Technology Co. Ltd (convolutional 3D network)Randomized 508 patients to CAD and 518 controlADR of CAD 39% vs control 23%
Su et al[16]Partially blinded RCTAutomatic quality control system (ACQS)(DCNN)Randomized 308 patients to AQCS and 315 to controlADR of AQCS 28.9% vs control 16.5%
Table 2 White light endoscopy
Ref.
Study design
Algorithm type
Dataset
Results
Komeda et al[23]Diagnostic model developmentCAD-neural network combination to assist WL endoscopy1200 training images then tested on 10 new imagesCross-validation accuracy: 0.751
Zheng et al[24]Diagnostic model developmentWL endoscopy using YOLO (CNN)196 WL images from an independent public databaseAccuracy: 79.3%
Sensitivity: 68.3%
Wang et al[25]Prospective crossover studyTraditional WL endoscopy vs CAD colonoscopy369 patients from a single hospital in ChinaAdenoma miss rate of 13.9% in the CAD group vs 40% in the traditional group, P < 0.0001
Yang et al[26]Diagnostic model developmentValidation of a deep learning model called “ResNet-152” to classify colorectal lesions3828 WL colonoscopy images from 1339 patientsMean model accuracy: 79.2% for advanced CRC, early CRC/HGD, TA, and non-neoplastic
AUC: 0.818
Table 3 Narrow band imaging
Ref.
Study design
Algorithm type
Dataset
Results
Tischendorf et al[29]Prospective Ex vivoCAD – NBI (support vector machine)209 polyp imagesAccuracy: 85.3%
Sensitivity: 90%
Specificity: 70.2%
Gross et al[27]Prospective Ex vivoCAD – NBI (support vector machine)434 polyp imagesAccuracy: 93.1%
Sensitivity: 95%
Specificity: 90.3%
NPV: 92.4%
Chen et al[31]RetrospectiveCAD – NBI (DCNN)284 polyp imagesAccuracy: 90.1%
Sensitivity: 96.3%
Specificity: 78.1%
PPV: 89.6%
NPV: 91.5%
Byrne et al[30]RetrospectiveCAD—NBI (DCNN)125 polyp videosAccuracy: 94%
Sensitivity: 98%
Specificity: 83%
PPV: 90%
NPV: 97%
Kominami et al[32]ProspectiveCAD –NBI (support vector machine)118 polypsAccuracy: 94.9%
Sensitivity: 95.9%
Specificity: 93.3%
PPV: 95.9%
NPV: 93.3%
Mori et al[33]ProspectiveCAD – NBI (support vector machine)466 polypsNPV: 95.2% to 96.5%
Song et al[35]Prospective In vivoCAD –NBI (DCNN)363 polypsAccuracy: 82.4%
Table 4 Laser-induced fluorescence spectroscopy
Ref.
Study design
Algorithm type
Dataset
Results
Kuiper et al[37]Diagnostic model developmentDiagnostic performance of WavSTAT87 patientsAccuracy: 73.4%
NPV: 74.4%
Rath et al[38]Diagnostic model developmentDiagnostic performance of WavSTAT for predicting polyp histology27 patientsAccuracy: 84.7%
Sensitivity: 81.8%
Specificity: 85.2%
NPV: 96.1%
Min et al[39]Randomized controlled trialLinked color imaging with laser endoscopic system vs WL141 patients from 3 hospitals in ChinaPolyp detection rate of 91% in the LCI group, 73% in the WL group, P < 0.0001
Table 5 Autofluorescence endoscopy
Ref.
Study design
Algorithm type
Dataset
Results
Arita et al[44]Diagnostic model developmentCalculation of a color-contrast index (CCI) for AFI43 patients who underwent both WL and AF endoscopySensitivity: 95.3%
Specificity: 63.6%
Aihara et al[45]Diagnostic model developmentCAD-assisted AF32 patients undergoing colonoscopy in a Japanese hospitalSensitivity: 94.2%
Specificity: 88.9%
PPV: 95.6%
NPV: 85.2%
Inomata et al[46]Diagnostic model developmentCAD-assisted AF88 patientsAccuracy: 82.8%
Sensitivity: 83.9%
Specificity: 82.6%
PPV: 53.1%
NPV: 95.6%
Horiuchi et al[47]Diagnostic model developmentCAD-assisted AF95 patients undergoing colonoscopyAccuracy: 91.5%
Sensitivity: 80.0%
Specificity: 95.3%
PPV: 85.2%
NPV: 93.4%
Table 6 Magnifying chromoendoscopy
Ref.Study designAlgorithm typeDatasetResults
Takemura et al[51]Partially blinded retrospective studyCAD using HuPAS134 pit pattern imagesAccuracy: 98.5%
Häfner et al[52]Partially blinded retrospective studyCAD using Dual-Tree Complex Wavelet Transform484 RGB pit pattern imagesAccuracy: 99.59%
Qi et al[53]Diagnostic model developmentCAD using automated imaged analysis79 colon samples (14 normal, 44 normal tissue adjacent to cancer, 21 malignant)Automated segmentation achieved precision ratio of 0.69 and match ratio of 0.73
Table 7 Endocytoscopy
Ref.
Study design
Algorithm type
Dataset
Results
Mori et al[54]Pilot studyCAD using EC-CAD176 colorectal polyps from 152 patientsAccuracy: 89.2%
Sensitivity: 92%
Specificity 79.5%
Takeda et al[55]Retrospective studyCAD using EC-CAD5543 endocytoscopy images for machine learning. 200 test imagesOverall
Accuracy: 94%
Sensitivity: 89.4%
Specificity: 98.9%
PPV: 98.8%
NPV: 90.1%
High-confidence diagnosis
Accuracy: 99.3%
Sensitivity: 98.1%
Specificity: 100%
PPV: 100%
NPV: 98.8%
Mori et al[33]Single-group, open-label, prospective studyReal-time CAD during colonoscopy466 diminutive polyps from 325 patientsAccuracy: 98.1%
Sensitivity 93.8%
Specificity 90.3%
PPV 94.1%
NPV 89.8%
Kudo et al[56]Retrospective studyCAD using EndoBRAIN100 polyps from 89 patientsAccuracy: 98%
Sensitivity 96.9%
Specificity 100%
PPV 100%
NPV 94.6%
Table 8 Confocal endomicroscopy
Ref.
Study design
Algorithm type
Dataset
Results
André et al[58]Diagnostic model developmentCAD using content based image retrieval (CBIR) approach135 polyps from 71 patientsAccuracy: 89.6%
Sensitivity 92.5%
Specificity 83.3%
Ştefănescu et al[59]Diagnostic model developmentCAD using NAVICAD and a two layer CNN1035 endomicroscopy images including 725 for training, 155 for validation, and 155 for testing.Testing decision accuracy error rate of 15.48% (24 out of 155 images)
Taunk et al[60]Feasibility studyCAD using expectation-maximization algorithm189 endomicroscopy images from 26 patientAccuracy: 94.2%
Sensitivity 94.8%
Specificity 93.5%
Table 9 Robotics
Ref.
Study design
Algorithm type
Dataset
Results
Eickhoff et al[63]Prospective, nonrandomized, unblinded feasibility studyCAD using NeoGuide Endoscopy System10 patients100% cecal intubation rate. Median time to cecum 20.5 min. 0 complications or adverse effects reported at discharge, 48 h, and 30 d
Pullens et al[64]Randomized control trial with crossover designCAD using automated lumen centralization8 expert endoscopists and 10 endoscopy-naïve novices performing endoscopy on a validated colon model with 21 polypsNovice
Accuracy: 88.1%
Time to cecum: 8 min 56 s
Experts
Accuracy: 69%
Time to cecum: 13 min 1 s