Minireviews
Copyright ©The Author(s) 2021.
World J Gastroenterol. Jun 28, 2021; 27(24): 3543-3555
Published online Jun 28, 2021. doi: 10.3748/wjg.v27.i24.3543
Table 1 Recently published articles on application of artificial intelligence in gastric neoplasms
Ref.
Purpose
AI type
Endoscopy type
Subjects
Outcomes
Detection of gastric neoplasms
Hirasawa et al[21], 2018Detect EGCCNN (SSD)Conventional endoscopyTraining: 13584 images; Test: 2296 images from 69 patients.Sensitivity 92.2%, PPV 30.6%
Ishioka et al[22], 2019Real time detection of EGCCNN (SSD)Conventional endoscopyLive video of 62 patientsAccuracy 94.1%, median time 1 s (range: 0-44 s)
Sakai et al[23], 2018Detect EGCCNNConventional endoscopyTraining: 348943 images; Test: 9650 imagesAccuracy 82.8%
Kanesaka et al[24], 2018Detect EGCSVMM-NBITraining: 126 images; Test: 81 imagesAccuracy 96.3%, sensitivity 96.7%, specificity 95%
Li et al[25], 2020Detect EGCCNN (Inception-v3)M-NBITraining: 2088 images; Test: 341 imagesAccuracy 91.2%, sensitivity 90.6%, specificity 90.9%
Horiuchi et al[26], 2020Classifying EGC from gastritisCNN (GoogLeNet)M-NBITraining: 2570 images; Test: 258 images.Accuracy 85.3%, sensitivity 95.4%, specificity 71.0%, test speed 51.83 images/s (0.02 s/image)
Horiuchi et al[27], 2020Detect EGCCNN (GoogLeNet)M-NBI174 videosAccuracy 85.1%, AUC 0.8684, sensitivity 87.4%, specificity 82.8%, PPV 83.5%, NPV 86.7%
Luo et al[28], 2019Real time detection of EGCGRAIDSConventional endoscopy1036496 images from 84424 patientsSensitivity (0.942) similar to the expert (0.945), superior to the competent (0.858) and the trainee (0.722) endoscopist
Ikenoyama et al[29], 2021Detect EGCCNN (SSD)WLI, NBI chromoendoscopyTraining: 13584 images; Test: 2940 images.Sensitivity 58.4%, specificity 87.3%, PPV 26.0%, NPV 96.5%
Classification of gastric neoplasms
Sun et al[30], 2018Classify ulcersDCNNConventional endoscopy854 imagesAccuracy 86.6%, sensitivity 90.8%, specificity 83.5%
Lee et al[31], 2019Detect EGC and benign ulcerCNN (ResNet50, Inception-v3, VGG16)Conventional endoscopyTraining: 717 images; Test: 70 imagesAUC 0.95, 0.97, and 0.85 in Inception, ResNet50, and VGG16
Cho et al[32], 2019Detect AGC, EGC, dysplasiaCNN (Inception-v4, ResNet152, Inception-Resnet-v2)Conventional endoscopy5217 images from 1469 patientsGastric cancer: accuracy 81.9%, AUC 0.877; Gastric neoplasm: accuracy 85.5%, AUC 0.927
Kim et al[33], 2020Classify gastric mesenchymal tumorsCNNEndoscopic ultrasonographyTraining: 905 images; Test: 212 images.Accuracy 79.2%, sensitivity 83.0%. specificity 75.5%
Prediction of invasion depth
Kubota et al[39], 2012Predict invasion depthBack propagationConventional endoscopyTraining: 800 images; Test: 90 imagesAccuracy 77.9%, 29.1%, 51.0% and 55.3% in T1, T2, T3, and T4 stage; Accuracy 68.9% and 63.6% in T1a and T1b stage
Zhu et al[40], 2019Predict invasion depthCNN (ResNet50)Conventional endoscopyTraining: 790 images; Test: 203 imagesAUC 0.94, overall accuracy 89.2%, sensitivity 76.5%, specificity 95.6%
Yoon et al[41], 2019Detect cancer, and predict invasion depthCNN (VGG16, Grad-CAM)Conventional endoscopy11539 imagesDetection AUC 0.981, depth prediction AUC 0.851 (undifferentiated type histology with a lower accuracy)
Cho et al[43], 2020Predict invasion depthCNN (Inception-ResNet-v2, DenseNet-161)Conventional endoscopyTraining: 2899 images, test: 206 imagesInternal validation: accuracy 84.1%, AUC 0.887; External validation: accuracy 77.3%, AUC 0.887
Nagao et al[44], 2020Predict invasion depthCNN (ResNet50)WLI, NBI, indigo-carmine 16557 images from 1084 cases of gastric cancerWLI: AUC 0.9590, sensitivity 89.2%, specificity 98.7%, accuracy 94.4%, PPV 98.3%, NPV 91.7%; NBI: AUC 0.9048; Indigo-carmine: AUC 0.9191
Blind-spot monitoring
Wu et al[48], 2019Detect blind spotDCNNConventional endoscopy34513 imagesAccuracy of detecting blind spot: 90.0%; Blind spot rate: 5.9%
Wu et al[49], 2019Detect EGC and blind spotDCNNConventional endoscopy24549 imagesAccuracy 92.5%, sensitivity 94.0%, specificity 91.0%, PPV 91.3%, NPV 93.8%
Chen et al[50], 2020Detect blind spotDCNNConventional endoscopy, U-TOELive video of 437 patientsBlind spot rate with AI: Sedated C-EGD, 3.4%; unsedated U-TOE, 21.8%; unsedated C- EGD, 31.2%