Copyright
©The Author(s) 2021.
World J Gastroenterol. Apr 14, 2021; 27(14): 1392-1405
Published online Apr 14, 2021. doi: 10.3748/wjg.v27.i14.1392
Published online Apr 14, 2021. doi: 10.3748/wjg.v27.i14.1392
Table 1 Artificial intelligence application for esophageal squamous cell cancer
AI Application | Study design | Data category | Type of Images | AI architecture | Training dataset | Validation Method or dataset | AUC | SEN | SPE | ACC | PPV | NPV | Compared with experts | Ref. |
Diagnosis | Retrospective | Still image | HRM | 2-class LDA | 104 sites | 167 sites | 0.93 | 84% | 95% | NA | NA | NA | NA | Shin et al[18], 2016 |
Diagnosis | Prospective | Still image | HRM | Fully automated algorithm | 104 sites | 167 sites | 0.937 | 95% | 91% | NA | NA | NA | NA | Quang et al[19], 2016 |
Detection | Retrospective | Still image | WCE | JDPCA + CCV | 400 images | 10-fold-CV | 0.9471 | 93.33% | 89.20% | 90.75% | NA | NA | NA | Liu et al[20], 2016 |
Diagnosis | Retrospective | Still image | WLI/NBI | CNN-SSD | 8428 images | Caffe DL framework/1118 images | NA | 81% (WLI)/89% (NBI) (per-patient) 72% (WLI)/86% (NBI) (per-image) | 79% | 99% | 39% | 95% | NA | Horie et al[21], 2019 |
Detection | Retrospective | Still image | WLI | DNN-CAD | 2428 images | 187 images | 0.9637 | 97.8% | 85.4% | 91.4% | 86.4% | 97.6% | Superior | Cai et al[22], 2019 |
Diagnosis | Retrospective | Still image | WLI/NBI/BLI | CNN-SSD | 22562 images | Caffe DL framework/727 images | NA | 100% (Non-ME + NBI/BLI) 90% (Non-ME + WLI) 98% (ME) | 63% (Non-ME + NBI/BLI) 76% (Non-ME + WLI) 56% (ME) | 77% (Non-ME + NBI/BLI) 81% (Non-ME + WLI) 77% (ME) | NA | NA | Equivalent | Ohmori et al[23], 2020 |
Diagnosis | Retrospective | Still image | ME-NBI | FCN-CAD | 1383 lesions | 3-fold-CV | NA | 87% (lesion level) | 84.1 (lesion level) | 89.2 (lesion level) 93.0 (pixel level) | NA | NA | Equivalent | Zhao et al[24], 2019 |
Diagnosis | Retrospective | Still image | ME-NBI | CNN | 7046 images | 5-fold-CV | NA | 89.3% | 98% | 93.7% | NA | NA | NA | Everson et al[25], 2019 |
Diagnosis | Retrospective | Still image | ECS | CNN-GoogLeNet | 4715 images | Caffe DL framework/1520 images | 0.85 | 92.6% | 89.3% | 90.9% | NA | NA | NA | Kumagai et al[27], 2019 |
Invasion depth measurement | Retrospective | Still image | WLI/NBI/BLI | CNN-SSD | 14338 images | Caffe DL framework/914 images | NA | 90.1% | 95.8% | 91.0% | 99.2% | 63.9% | Equivalent | Nakagawa et al[28], 2019 |
Invasion depth measurement | Retrospective | Still image | WLI/NBI | CNN-SDD-GoogLeNet | 1751 images | Caffe DL framework/291 images | NA | 84.1% | 73.3% | 80.9% | NA | NA | Superior | Tokai et al[29], 2020 |
Diagnosis | Retrospective | Still image/Real-time video | NBI | CAD-SegNet | 6473 images | 6671 images/80 videos | 0.989 | 98.04% (per-image) 91.5%(per-frame) | 95.03% (per-image) 99.9%(per-frame) | NA | NA | NA | NA | Guo et al[30], 2020 |
Diagnosis | Retrospective/ Prospective | Still image/Real-time image | WLI | GRAIDS/DeepLab V.3+ | 4091 images | 3323 images | NA | NA | NA | NA | NA | NA | Equivalent | Luo et al[31], 2020 |
Detection/Invasion depth measurement | Retrospective | Still image/Real-time video | NBI/BLI | CNN-SSD | 17274 images | 5277 images/144 videos | NA | 91.1% | 51.5% | 63.9% | 46.1% | 92.7% | Superior | Fukuda et al[32], 2020 |
Invasion depth measurement | Retrospective | Still image/video images | WLI/NBI/BLI | CNN-SSD | 23977 images | PyTorch DL framewor/102 video images | NA | 50% (non-ME) 70.8%(ME) | 98.7% (non-ME) 94.9%(ME) | 87.3% (non-ME) 89.2%(ME) | 92.3% (non-ME) 81.0%(ME) | 86.5% (non-ME) 91.4%(ME) | Superior | Shimamoto et al[33], 2020 |
Table 2 Artificial intelligence application for esophageal adenocarcinoma
AI Application | Study design | Data category | Type of Images | AI architecture | Training dataset | Validation Method or dataset | AUC | SEN | SPE | ACC | PPV | NPV | Compared with experts | Ref. |
Detection | Retrospective | Still image | WLI | CAD-SVM | 64 images | LOOCV | NA | 95% | NA | 75% | NA | NA | NA | van der Sommen et al[36], 2014 |
Detection | Retrospective | Still image | WLI | CAD-SVM | 100 Images | LOOCV | NA | 83% (per-image) 86% (per-patient) | 83% (per-image) 87% (per-patient) | NA | NA | NA | Inferior | van der Sommen et al[37], 2016 |
Detection | Retrospective | Still image | VLE | CAD | 60 images | LOOCV | 0.95 | 90% | 93% | NA | NA | NA | Superior | Swager et al[38], 2017 |
Detection | Retrospective | Still image | VLE | CAD | 60 images | LOOCV | 0.90-0.93 | NA | NA | NA | NA | NA | Superior | van der Sommen et al[40], 2018 |
Diagnosis | Retrospective | Still image | WLI/NBI | CNN | 8 patients | Caffe DL framework | NA | 88% (WLI)/88% (NBI) (per-patient) 69% (WLI)/71% (NBI) (per-image) | NA | 90% | NA | NA | NA | Horie et al[21], 2019 |
Detection | Retrospective | Still image | WLE | CNN-SSD | 100 images/39patients | 20% patients/5-fold-CV/LOOCV | NA | 96% | 92% | NA | NA | NA | NA | Ghatwary et al[41], 2019 |
Detection | Retrospective | Still image | WLI/NBI | CNN- Inception-ResNet-v2 | 1832 images | 458 images | NA | 96.4% | 94.2% | 95.4% | NA | NA | NA | Hashimoto et al[42], 2019 |
Detection | Retrospective | Still image | WLI | CAD | 60 images | LOOCV | 0.92 | 95% | 85% | 91.7% | NA | NA | NA | de Groof et al[43], 2019 |
Detection | Retrospective | Still image | WLI | CAD-ResNet-UNet | 1544 images | 4-fold-CV (internal validation)/160 images (external validation) | NA | 87.6% (internal validation) 92.5% (external validation) | 88.6% (internal validation) 82.5% (external validation) | 88.2% (internal validation) 87.5% (external validation) | NA | NA | NA | de Groof et al[44], 2019 |
Diagnosis | Retrospective | Still image | WLI/NBI | CAD-ResNet | 248 images | LOOCV | NA | 97% (WLI)/94% (NBI) (Augsburg data)92% (MICCAI) | 88% (WLI)/80% (NBI) (Augsburg data)100% (MICCAI) | NA | NA | NA | NA | Ebigbo et al[45], 2019 |
Diagnosis | Retrospective | Random images from real-time video | WLI | CAD-ResNet-/DeepLab V.3+ | 129 images | 36 images (real time) | NA | 83.7% | 100% | 89.9% | NA | NA | NA | Ebigbo et al[49], 2020 |
Surveillance | Prospective | Real-time image | WLI/NBI/VLE | IRIS | NA | Real-time image | NA | NA | NA | NA | NA | NA | NA | Trindade et al[50], 2019 |
Detection | Prospective | Live endoscopic procedure | Live endoscopic procedure | CAD-ResNet/U-Net | 1544 images | 48 levels/144 images/20 live endoscopic procedure | NA | 90.9% (per level) 75.8% (per image) 90% (per patient) | 89.2% (per level) 86.5% (per image) 90% (per patient) | 89.6% (per level) 84.0% (per image) 90% (per patient) | NA | NA | NA | de Groof et al[51], 2020 |
- Citation: Liu Y. Artificial intelligence-assisted endoscopic detection of esophageal neoplasia in early stage: The next step? World J Gastroenterol 2021; 27(14): 1392-1405
- URL: https://www.wjgnet.com/1007-9327/full/v27/i14/1392.htm
- DOI: https://dx.doi.org/10.3748/wjg.v27.i14.1392