Basic Study
Copyright ©The Author(s) 2016.
World J Gastroenterol. Aug 21, 2016; 22(31): 7124-7134
Published online Aug 21, 2016. doi: 10.3748/wjg.v22.i31.7124
Table 1 Outline of the three image databases (DB-1, DB-2 and DB-3) used for experimentation
DB-1DB-2DB-3
Number patches Marsh-0280280280
Number patches Marsh-3280280280
Number images Marsh-0246210220
Number images Marsh-3171154154
Number patients Marsh-01258280
Number patients Marsh-3383536
EndoscopeGIF-Q165, N180GIF-H180GIF-H180
Imaging techniqueTraditional (white-light) imagingTraditional (white-light) imagingNarrow-band imaging[11]
Table 2 All individual mean classification accuracies and standard deviations (±) for all configurations. Feature extraction was performed based on local binary patterns, multi-fractal spectrum and improved Fisher vectors
Feature extractionData setExpertPatch-based
Image-based
Patient-based
Expert diagnosis
Hybrid diagnosis
Expert diagnosis
Hybrid diagnosis
Expert diagnosis
Hybrid diagnosis
mean±mean±mean±mean±mean±mean±
LBPDB-1A0.8700.0570.9100.0420.9700.0270.9640.0330.9700.0580.9720.033
LBPDB-2A0.8570.0420.9100.0400.9570.0260.9550.0380.9880.0470.9990.005
LBPDB-3A0.7730.0510.9020.0590.9630.0200.9650.0360.9950.0550.9940.016
LBPDB-1B0.8340.0630.9090.0510.8790.0530.9080.0460.8730.0660.9470.062
LBPDB-2B0.8270.0510.9030.0480.8960.0400.9050.0480.9460.0460.9980.009
LBPDB-3B0.6270.0580.8830.0570.8180.0400.9130.0470.8320.0700.9600.064
LBPDB-1C0.8820.0520.9160.0450.7780.0700.9020.0570.7990.0640.9590.053
LBPDB-2C0.9120.0370.9260.0440.8930.0330.9140.0400.9430.0360.9910.017
LBPDB-3C0.7180.0640.8920.0530.8790.0450.9220.0420.9460.0590.9840.035
MFSDB-1A0.8700.0570.8910.0510.9700.0270.9640.0260.9700.0580.9740.032
MFSDB-2A0.8570.0420.8780.0400.9570.0260.9550.0380.9880.0470.9990.005
MFSDB-3A0.7730.0510.8170.0620.9630.0200.9680.0350.9950.0550.9940.016
MFSDB-1B0.8340.0630.8990.0620.8790.0530.8870.0650.8730.0660.9320.067
MFSDB-2B0.8270.0510.8530.0610.8960.0400.9010.0600.9460.0460.9970.011
MFSDB-3B0.6270.0580.7760.0740.8180.0400.8400.0640.8320.0700.9500.064
MFSDB-1C0.8820.0520.9090.0500.7780.0700.8620.0550.7990.0640.9250.053
MFSDB-2C0.9120.0370.9290.0490.8930.0330.8880.0530.9430.0360.9930.017
MFSDB-3C0.7180.0640.8110.0710.8790.0450.8880.0670.9460.0590.9440.090
IFVDB-1A0.8700.0570.9030.0460.9700.0270.9680.0320.9700.0580.9760.033
IFVDB-2A0.8570.0420.8890.0440.9570.0260.9570.0380.9880.0470.9990.005
IFVDB-3A0.7730.0510.8800.0610.9630.0200.9680.0350.9950.0550.9960.010
IFVDB-1B0.8340.0630.9030.0480.8790.0530.9100.0490.8730.0660.9610.049
IFVDB-2B0.8270.0510.8780.0550.8960.0400.9080.0590.9460.0460.9960.010
IFVDB-3B0.6270.0580.8830.0540.8180.0400.9030.0530.8320.0700.9970.037
IFVDB-1C0.8820.0520.9080.0470.7780.0700.8920.0580.7990.0640.9540.061
IFVDB-2C0.9120.0370.9230.0520.8930.0330.9060.0480.9430.0360.9930.012
IFVDB-3C0.7180.0640.8870.0550.8790.0450.9250.0440.9460.0590.9810.024
Table 3 Average classification accuracies and standard deviations (±) for specific feature extraction methods, databases and experts
Feature extractionData setExpertPatch-based
Image-based
Patient-based
Expert diagnosis
Hybrid diagnosis
Expert diagnosis
Hybrid diagnosis
Expert diagnosis
Hybrid diagnosis
mean±mean±mean±mean±mean±mean±
LBPmeanmean0.8110.0910.9060.0130.8930.0650.9280.0260.9210.0700.9780.019
MFSmeanmean0.8110.0910.8630.0520.8930.0650.9060.0460.9210.0700.9680.030
IFVmeanmean0.8110.0910.8950.0650.8930.0650.9260.0300.9210.0700.9810.017
meanDB-1mean0.8620.0220.9050.0070.8760.0830.9170.0390.8810.0740.9560.018
meanDB-2mean0.8650.0370.8990.0310.9150.0310.9210.0270.9590.0220.9960.003
meanDB-3mean0.7060.0640.8590.0450.8870.0630.9210.0420.9240.0720.9750.020
meanmeanA0.8330.0460.8870.0060.9630.0060.9630.0060.9840.0110.9890.012
meanmeanB0.7630.1020.8760.0410.8640.0360.8970.0230.8840.0500.9680.024
meanmeanC0.8370.0900.9000.0360.8500.0540.9000.0200.8960.0730.9690.025