Copyright
©The Author(s) 2016.
World J Gastroenterol. Aug 21, 2016; 22(31): 7124-7134
Published online Aug 21, 2016. doi: 10.3748/wjg.v22.i31.7124
Published online Aug 21, 2016. doi: 10.3748/wjg.v22.i31.7124
DB-1 | DB-2 | DB-3 | |
Number patches Marsh-0 | 280 | 280 | 280 |
Number patches Marsh-3 | 280 | 280 | 280 |
Number images Marsh-0 | 246 | 210 | 220 |
Number images Marsh-3 | 171 | 154 | 154 |
Number patients Marsh-0 | 125 | 82 | 80 |
Number patients Marsh-3 | 38 | 35 | 36 |
Endoscope | GIF-Q165, N180 | GIF-H180 | GIF-H180 |
Imaging technique | Traditional (white-light) imaging | Traditional (white-light) imaging | Narrow-band imaging[11] |
Feature extraction | Data set | Expert | Patch-based | Image-based | Patient-based | |||||||||
Expert diagnosis | Hybrid diagnosis | Expert diagnosis | Hybrid diagnosis | Expert diagnosis | Hybrid diagnosis | |||||||||
mean | ± | mean | ± | mean | ± | mean | ± | mean | ± | mean | ± | |||
LBP | DB-1 | A | 0.870 | 0.057 | 0.910 | 0.042 | 0.970 | 0.027 | 0.964 | 0.033 | 0.970 | 0.058 | 0.972 | 0.033 |
LBP | DB-2 | A | 0.857 | 0.042 | 0.910 | 0.040 | 0.957 | 0.026 | 0.955 | 0.038 | 0.988 | 0.047 | 0.999 | 0.005 |
LBP | DB-3 | A | 0.773 | 0.051 | 0.902 | 0.059 | 0.963 | 0.020 | 0.965 | 0.036 | 0.995 | 0.055 | 0.994 | 0.016 |
LBP | DB-1 | B | 0.834 | 0.063 | 0.909 | 0.051 | 0.879 | 0.053 | 0.908 | 0.046 | 0.873 | 0.066 | 0.947 | 0.062 |
LBP | DB-2 | B | 0.827 | 0.051 | 0.903 | 0.048 | 0.896 | 0.040 | 0.905 | 0.048 | 0.946 | 0.046 | 0.998 | 0.009 |
LBP | DB-3 | B | 0.627 | 0.058 | 0.883 | 0.057 | 0.818 | 0.040 | 0.913 | 0.047 | 0.832 | 0.070 | 0.960 | 0.064 |
LBP | DB-1 | C | 0.882 | 0.052 | 0.916 | 0.045 | 0.778 | 0.070 | 0.902 | 0.057 | 0.799 | 0.064 | 0.959 | 0.053 |
LBP | DB-2 | C | 0.912 | 0.037 | 0.926 | 0.044 | 0.893 | 0.033 | 0.914 | 0.040 | 0.943 | 0.036 | 0.991 | 0.017 |
LBP | DB-3 | C | 0.718 | 0.064 | 0.892 | 0.053 | 0.879 | 0.045 | 0.922 | 0.042 | 0.946 | 0.059 | 0.984 | 0.035 |
MFS | DB-1 | A | 0.870 | 0.057 | 0.891 | 0.051 | 0.970 | 0.027 | 0.964 | 0.026 | 0.970 | 0.058 | 0.974 | 0.032 |
MFS | DB-2 | A | 0.857 | 0.042 | 0.878 | 0.040 | 0.957 | 0.026 | 0.955 | 0.038 | 0.988 | 0.047 | 0.999 | 0.005 |
MFS | DB-3 | A | 0.773 | 0.051 | 0.817 | 0.062 | 0.963 | 0.020 | 0.968 | 0.035 | 0.995 | 0.055 | 0.994 | 0.016 |
MFS | DB-1 | B | 0.834 | 0.063 | 0.899 | 0.062 | 0.879 | 0.053 | 0.887 | 0.065 | 0.873 | 0.066 | 0.932 | 0.067 |
MFS | DB-2 | B | 0.827 | 0.051 | 0.853 | 0.061 | 0.896 | 0.040 | 0.901 | 0.060 | 0.946 | 0.046 | 0.997 | 0.011 |
MFS | DB-3 | B | 0.627 | 0.058 | 0.776 | 0.074 | 0.818 | 0.040 | 0.840 | 0.064 | 0.832 | 0.070 | 0.950 | 0.064 |
MFS | DB-1 | C | 0.882 | 0.052 | 0.909 | 0.050 | 0.778 | 0.070 | 0.862 | 0.055 | 0.799 | 0.064 | 0.925 | 0.053 |
MFS | DB-2 | C | 0.912 | 0.037 | 0.929 | 0.049 | 0.893 | 0.033 | 0.888 | 0.053 | 0.943 | 0.036 | 0.993 | 0.017 |
MFS | DB-3 | C | 0.718 | 0.064 | 0.811 | 0.071 | 0.879 | 0.045 | 0.888 | 0.067 | 0.946 | 0.059 | 0.944 | 0.090 |
IFV | DB-1 | A | 0.870 | 0.057 | 0.903 | 0.046 | 0.970 | 0.027 | 0.968 | 0.032 | 0.970 | 0.058 | 0.976 | 0.033 |
IFV | DB-2 | A | 0.857 | 0.042 | 0.889 | 0.044 | 0.957 | 0.026 | 0.957 | 0.038 | 0.988 | 0.047 | 0.999 | 0.005 |
IFV | DB-3 | A | 0.773 | 0.051 | 0.880 | 0.061 | 0.963 | 0.020 | 0.968 | 0.035 | 0.995 | 0.055 | 0.996 | 0.010 |
IFV | DB-1 | B | 0.834 | 0.063 | 0.903 | 0.048 | 0.879 | 0.053 | 0.910 | 0.049 | 0.873 | 0.066 | 0.961 | 0.049 |
IFV | DB-2 | B | 0.827 | 0.051 | 0.878 | 0.055 | 0.896 | 0.040 | 0.908 | 0.059 | 0.946 | 0.046 | 0.996 | 0.010 |
IFV | DB-3 | B | 0.627 | 0.058 | 0.883 | 0.054 | 0.818 | 0.040 | 0.903 | 0.053 | 0.832 | 0.070 | 0.997 | 0.037 |
IFV | DB-1 | C | 0.882 | 0.052 | 0.908 | 0.047 | 0.778 | 0.070 | 0.892 | 0.058 | 0.799 | 0.064 | 0.954 | 0.061 |
IFV | DB-2 | C | 0.912 | 0.037 | 0.923 | 0.052 | 0.893 | 0.033 | 0.906 | 0.048 | 0.943 | 0.036 | 0.993 | 0.012 |
IFV | DB-3 | C | 0.718 | 0.064 | 0.887 | 0.055 | 0.879 | 0.045 | 0.925 | 0.044 | 0.946 | 0.059 | 0.981 | 0.024 |
Feature extraction | Data set | Expert | Patch-based | Image-based | Patient-based | |||||||||
Expert diagnosis | Hybrid diagnosis | Expert diagnosis | Hybrid diagnosis | Expert diagnosis | Hybrid diagnosis | |||||||||
mean | ± | mean | ± | mean | ± | mean | ± | mean | ± | mean | ± | |||
LBP | mean | mean | 0.811 | 0.091 | 0.906 | 0.013 | 0.893 | 0.065 | 0.928 | 0.026 | 0.921 | 0.070 | 0.978 | 0.019 |
MFS | mean | mean | 0.811 | 0.091 | 0.863 | 0.052 | 0.893 | 0.065 | 0.906 | 0.046 | 0.921 | 0.070 | 0.968 | 0.030 |
IFV | mean | mean | 0.811 | 0.091 | 0.895 | 0.065 | 0.893 | 0.065 | 0.926 | 0.030 | 0.921 | 0.070 | 0.981 | 0.017 |
mean | DB-1 | mean | 0.862 | 0.022 | 0.905 | 0.007 | 0.876 | 0.083 | 0.917 | 0.039 | 0.881 | 0.074 | 0.956 | 0.018 |
mean | DB-2 | mean | 0.865 | 0.037 | 0.899 | 0.031 | 0.915 | 0.031 | 0.921 | 0.027 | 0.959 | 0.022 | 0.996 | 0.003 |
mean | DB-3 | mean | 0.706 | 0.064 | 0.859 | 0.045 | 0.887 | 0.063 | 0.921 | 0.042 | 0.924 | 0.072 | 0.975 | 0.020 |
mean | mean | A | 0.833 | 0.046 | 0.887 | 0.006 | 0.963 | 0.006 | 0.963 | 0.006 | 0.984 | 0.011 | 0.989 | 0.012 |
mean | mean | B | 0.763 | 0.102 | 0.876 | 0.041 | 0.864 | 0.036 | 0.897 | 0.023 | 0.884 | 0.050 | 0.968 | 0.024 |
mean | mean | C | 0.837 | 0.090 | 0.900 | 0.036 | 0.850 | 0.054 | 0.900 | 0.020 | 0.896 | 0.073 | 0.969 | 0.025 |
- Citation: Gadermayr M, Kogler H, Karla M, Merhof D, Uhl A, Vécsei A. Computer-aided texture analysis combined with experts' knowledge: Improving endoscopic celiac disease diagnosis. World J Gastroenterol 2016; 22(31): 7124-7134
- URL: https://www.wjgnet.com/1007-9327/full/v22/i31/7124.htm
- DOI: https://dx.doi.org/10.3748/wjg.v22.i31.7124