Topic Highlight
Copyright ©The Author(s) 2016.
World J Gastroenterol. Jan 21, 2016; 22(3): 949-960
Published online Jan 21, 2016. doi: 10.3748/wjg.v22.i3.949
Table 1 Commonly used publically available software for each step in genomic studies
AnalysisSoftwareURLRef.
GWASPLINKhttp://pngu.mgh.harvard.edu/~purcell/plink/[7]
EMMAXhttp://genetics.cs.ucla.edu/emmax/[10]
FaSThttp://research.microsoft.com/en-us/um/redmond/projects/MSCompBio/Fastlmm/[13]
GEMMAhttp://www.xzlab.org/software.html[14]
ImputationSHAPEIT (pre-phasing)https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html[20]
IMPUTE2 (pre-phasing and imputation)https://mathgen.stats.ox.ac.uk/impute/impute_v2.html[17]
MACH (pre-phasing and imputation)http://csg.sph.umich.edu//abecasis/MACH/tour/imputation.html[18]
fastPHASE (pre-phasing and imputation)https://els.comotion.uw.edu/express_license_technologies/fastphase[16]
BEAGLE (pre-phasing and imputation)http://faculty.washington.edu/browning/beagle/beagle.html[19]
SNPTEST (association testing)https://mathgen.stats.ox.ac.uk/genetics_software/snptest/old/snptest.html[22]
Meta-analysisMETALhttp://csg.sph.umich.edu//abecasis/Metal/[27]
METAhttps://mathgen.stats.ox.ac.uk/genetics_software/meta/meta.html[22]
MetABELhttp://www.genabel.org/packages/MetABEL[30]
GWAMAhttp://www.well.ox.ac.uk/gwama/download.shtml[31]
PLINKhttp://pngu.mgh.harvard.edu/~purcell/plink/metaanal.shtml[7]
Pathway analysisGenGenhttp://gengen.openbioinformatics.org/en/latest/tutorial/pathway/[34]
ALIGATORhttp://x004.psycm.uwcm.ac.uk/~peter/[39]
i-GSEA4GWAShttp://gsea4gwas.psych.ac.cn/[40]
GSEA-SNPhttps://http://www.nr.no/en/projects/software-genomics[41]
DAVIDhttp://david.ncifcrf.gov/summary.jsp[42]
GeneTrailhttp://genetrail.bioinf.uni-sb.de/[43]
WebGestalthttp://bioinfo.vanderbilt.edu/webgestalt/[44]
Network analysisCytoscapehttp://www.cytoscape.org/[45]
DAPPLEhttp://www.broadinstitute.org/mpg/dapple/dappleTMP.php[46]
STRINGShttp://string-db.org/[47]
FUNCOUPhttp://funcoup.sbc.su.se/search/[48]
Gene-gene interactionPLINKhttp://pngu.mgh.harvard.edu/~purcell/plink/epi.shtml[7]
BOOSThttp://bioinformatics.ust.hk/BOOST.html[52]
MDRhttps://ritchielab.psu.edu/mdr-downloads[55]
MicrobiomeQIIMEhttp://qiime.org/[69]
mothurhttp://www.mothur.org/wiki/Main_Page[71]
VAMPShttps://vamps.mbl.edu/portals/hmp/hmp.php[72]
PhymmBLhttp://ccb.jhu.edu/software/phymmbl/index.shtml[73]
MEGAN5http://ab.inf.uni-tuebingen.de/software/megan5/[74]
PhyIOTUhttps://github.com/sharpton/PhylOTU[75]
MLTreeMaphttp://mltreemap.org/[76]
PleiotropyCPMAhttp://coruscant.itmat.upenn.edu/software.html[92]
ASSEThttp://www.bioconductor.org/packages/release/bioc/html/ASSET.html[93]
GPAhttps://github.com/dongjunchung/GPA[98]
SMAThttp://www.hsph.harvard.edu/xlin/software.html[101]
Table 2 Take home messages from our discussion on the application of computational methods in genetic study of inflammatory bowel disease
Take home messages
GWAS is an unbiased method to identify common genetic variants that are significantly associated with complex human diseases. Sample structure needs to be carefully handled to avoid false positive results
Imputation is often employed to infer un-genotyped SNPs based on those genotyped ones, followed by meta-analysis to combine results from multiple studies, in order to increase the power in GWAS
Pathway analyses help to identify genetic variants that have modest individual effect but jointly make significant contribution to disease susceptibility
Both gene-gene interactions and gene-environment interactions are important underlying factors for IBD
Pleiotropy studies aim to identify genetic loci shared by IBD and other immune diseases
Risk prediction is one of the ways to translate GWAS discoveries to clinics - to identify patients at high risk