Copyright
©2014 Baishideng Publishing Group Inc.
World J Gastroenterol. Jun 21, 2014; 20(23): 7366-7380
Published online Jun 21, 2014. doi: 10.3748/wjg.v20.i23.7366
Published online Jun 21, 2014. doi: 10.3748/wjg.v20.i23.7366
Ref. | Animal model | Polyphenol dose and treatment period length | Effects | Mechanisms |
Gnoni et al[27], 2009 | HepG2 cells | 25 μmol/L resveratrol | ↓ Triacylglycerols | ↓ ACC activity = FAS activity |
30 min | ||||
Zang et al[29], 2006 | HepG2 cells | 10 μmol/L resveratrol | Prevent lipid accumulation | ↑ phosphorylation AMPK (activation) in liver |
24 h | ↑ phosphorylation ACC (inhibition) in liver | |||
Shang et al[30], 2008 | HepG2 cells | 50 μmol/L resveratrol | ↓ Triacylglycerols | ↑ phosphorylation AMPK liver (activation) |
24 h | ↓ mRNA de SREBP1c and FAS liver | |||
Wang et al[28], 2009 | Human HepG2 cells | 40 μmol/L resveratrol | ↓ Triacylglycerols | ↓ SREBP 1c |
24 h | ↑ SIRT 1 | |||
Vidyashankar et al[53], 2013 | Hep G2 cells | 10 μmol/L quercetin | ↓ Triacylglycerols | |
24 h | ↓ Insuline resistance | |||
↓ Oxidative stress | ||||
↑ Superoxide dismutase, catalase and glutathione peroxidase activities | ||||
Guo et al[60], 2011 | Hep G2 cells | Anthocyanin Cy-3-g | ↓ Triacylglycerols | Inhibit translocation of GPAT1 |
1, 10, 100 μmol/L | ↓ GPAT, mtGPAT1 activity | |||
24 h | ||||
Baselga-Escudero et al[61], 2012 | FAO cells | Proanthocyanidins | ↓ MiR-122 at 25,50, | 25 mg/L, ↓ FAS (5 h) protein expression |
10, 25, 50, 100 mg/L | 100 mg/L | |||
1 h | ↓ MiR.122, FAS with time (1, 3 h. 25 mg/L) | |||
Pil Hwang et al[62], 2013 | Hep G2 cells | 3-caffeoyl, 4-dihydrocaffeoylquinic acid | ↓ Fat accumulation in a dose-dependent manner | ↓ SREBP1c, FAS mRNA and protein expression = LXRα mRNA expression |
1, 3, 10 μmol/L | ||||
1 h | ↑ Activating AMPK | |||
↑ SIRT1 | ||||
Liu et al[65], 2011 | HepG2 cells | Blueberry extract | ↓ Triacylglycerols accumulation | |
20, 40, 60, 80 and 100 μg/mL 24 h | 80 μg/m L ↓ 60% of triacylglycerols accumulation | |||
Lee et al[67], 2012 | BALB/c normal liver cells | Extract of Hibicus sabdariffa L | ↑ Cell viability | ↓ p-JNK and AIF, tBid and Bax protein expression |
Steatosis produced by | 0.05, 0.1, 0.5, 1 mg/mL | ↓ Lipid peroxidation | ||
acetaminophen | 48 h | ↑ Catalase and GSH | ||
Wang et al[66], 2012 | HepG2 | Extract of Ginkgo biloba | ↓ Triacylglycerols | ↑ CPT-1a, ACO mRNA expression |
200 μg/mL in vitro | ↓ FAS, Acac-β mRNA expression | |||
24 h | ↑ CPT-1a protein expression |
Ref. | Animal model | Resveratrol dose and treatment period length | Effects | Mechanisms |
Baur et al[31], 2006 | Male C57BL/6NIA mice fed a high-fat diet | 0.04% in the diet (estimated 22.4 mg/kg bw per day) | ↓ Lipid droplets in liver | ↓ Acetylation status of PGC-1α protein in liver |
6 wk | ||||
186 mg kg bw per day | ↑ Mitochondrial number | |||
6 wk | ||||
Kasdallah-Grissa et al[39], 2006 | Male Wistar rats fed a standard diet | 0.04% in the diet (estimated 300-450 mg/kg bw per day) | ↓ Oxidative stress | |
3 g ethanol/kg bw per day | 6 wk | ↓ Lipid peroxidation | ||
Ahn et al[32], 2008 | Male C57BL6/J mice fed an atherogenic diet | 0.0125% in the diet (estimated 10 mg/kg bw per day) | ↓Total lipids and triacylglycerols in liver | ↓ Expression lipogenic enzymes |
8 wk | Ameliorated necroinflammation | ↑ Expression enzymes involved in fatty acid oxidation | ||
↑ SIRT1 mRNA expression | ||||
Ajmo et al[40], 2008 | Male C57BL/6J mice fed a low-fat diet | 200 mg/kg bw per day | ↓ Liver weight | ↓ SREBP-1c mRNA and protein expressions |
Ethanol added to account 29% of total calories | 400 mg/kg bw per day 4 wk | ↓ Lipid droplets | ↓ FAS, SCD, ACC, ME mRNA | |
↓ Triacylglycerols | ↑ PGC-1α mRNA | |||
↑ ACO, CPT-1a mRNA | ||||
↑ Fatty acid oxidation | ||||
Activation AMPK/SIRT1 axis | ||||
Bujanda et al[37], 2008 | Male Wistar rats | 10 mg/kg bw per day | ↓ Liver fat infiltration | |
Steatosis induced by feeding rats ad libitum for four days per week and then fasting them the remaining three days | 4 wk | ↓ Oxidative stress ↓ ALT | ||
Kim et al[33], 2008 | C57BL/6J mice a high fat diet | 0.4% in the diet (estimated 400 mg/kg bw per day) 10 wk | ↓ Liver weight | |
↓ Triacylglycerols | ||||
Shang et al[30], 2008 | Male Wistar rats fed a high-fat, high-sucrose diet | 100 mg/kg bw per day 10 wk | ↓ Triacylglycerols | ↑ AMPK phosphorylation (activation) |
↓ Lipid droplets | ↓ SREBP-1c and FAS mRNA | |||
Rivera et al[42], 2009 | Male fa/fa Zucker rats fed standard diet | 10 mg/kg bw per day 8 wk | ↓ Triacylglycerols | ↓ ACC activity |
AMPK activation | ||||
Cho et al[34], 2012 | Male C57BL/6J mice fed a high-fat diet | 0.005% in the diet (0.5 mg/kg bw per day) | 0.5 mg/kg bw per day | ↓ PAP = Enzymes involved in fatty acid oxidation |
10 wk | ↓ Triacylglycerols | |||
↓ Number and size of liver fat droplets | ↓ FAS and ME activities | |||
0.02% in the diet (2 mg/kg bw per day) | 2 mg/kg bw per day ↓ Triacylglycerols | ↓ PAP = Enzymes involved in fatty acid oxidation | ||
10 wk | ↓ Number and size of liver fat droplets | |||
Gómez-Zorita et al[43], 2012 | Male fa/fa Zucker rats fed a standard diet | 15 mg/kg bw per day | 15 and 45 mg/kg bw | = Lipogenic enzyme activity |
45 mg/kg bw per day | ↓ Liver weight | ↑ Activity of enzymes involved in fatty acid oxidation | ||
↓ Triacylglycerols | ||||
6 wk | ↓ Oxidative stress | |||
15 mg/kg bw↓ Transaminases | ||||
Poulsen et al[35], 2012 | Male Wistar rats fed a high-fat diet | 100 mg/kg bw per day | Normalized triacylglycerols No hepatic inflammation | ↑ UCP2 ↑ Mitochondria number |
8 wk | ||||
Alberdi et al[36], 2013 | Male Sprague-Dawley rats fed a high-fat, high-sucrose diet | 30 mg/kg of bw per day | ↓ Triacylglycerols | ↑ Activity of enzymes involved in fatty acid oxidation = FAS, G6PDH, ME activities |
6 wk | ||||
↑ Phosphorylated ACC/total ACC (inhibition) | ||||
↑ Phosphorylated AMPK/total AMPK (activation) | ||||
= PPAR-α, SREBP-1c, SIRT1, PGC-1α, TFAM, COX2, and HNF-4α, ↓ Acetylated PGC-1α /total PGC-1α (activation) | ||||
Franco et al[38], 2013 | Lactating Wistar rats | 30 mg/kg per day | ↓ Triacylglycerols | |
4 wk | ↓ Oxidative stress |
Ref. | Animal model | Quercetin dose and treatment period length | Effects | Mechanisms |
Kobori et al[55], 2009 | BALB/c mice with STZ-induced diabetes and steatosis fed a standard diet | 0.5% in the diet | ↓ Oxidative stress | |
2 wk | ↓ Liver damage | |||
Kobori et al[56], 2011 | C57BL/6 J mice fed a high-fat diet | 0.5% in the diet | ↓ Triacylglycerols | Normalized gene expression of PPAR-γ, SREBP-1c, FAS, CD36 |
20 wk | ↓ Oxidative stress | ↑ PPAR-α mRNA expression | ||
Marcolin et al[58,59], 2012, 2013 | Male C57BL/6J mice fed a diet deficient in methionine and choline | 0.005% in the diet | ↓ Macro/micro vesicular steatosis | ↓ Proinflammatory ond profibritic gene expression |
4 wk | ↓ Balloning | |||
↓ Serum transaminases | ||||
↓ Oxidative stress | ||||
↓ DNA damage | ||||
Panchal et al[57], 2012 | Male Wistar rats fed a high-fat diet | 0.8% in the diet (50 mg/kg bw per day) | Attenuated steatosis | ↑ Nrf2 |
8 wk | ↓ NF-kβ | |||
↑ CPT-1a | ||||
Jung et al[50], 2013 | C57B1/6 mice fed a high-fat diet | 0.025% in the diet | ↓ Liver weight | ↓ FAS, Acaca, Apoa4, Abcg5, Fdft1 and GPAM mRNA expressions |
↓ Triacylglycerols | ||||
8 wk | ↓ Lipid droplet size | |||
Ying et al[54], 2013 | Gerbils fed a high-fat diet | 15, 30, 60 mg/kg bw per day | All doses | |
↓ Triacylglycerols | ||||
2 wk | ↓ Lipid droplets size | |||
↓ Serum transaminases | ||||
60 mg/kg bw per day | ||||
↓ Liver collagen |
Ref. | Animal model | Polyphenols dose and treatment period length | Effects | Mechanisms |
Guo et al[60], 2011 | Male KKAy mice fed a standard diet | Anthocyanin Cy-3-g | ↓ Triacylglycerols | ↓ GPAT1 activity |
0.01% in the diet | ↓ Lipid droplets | |||
12 wk | ||||
Baselga-Escudero et al[61], 2012 | Male Wistar rats fed a standard diet and 2.5 mL of lard oil/kg BW | Proanthocyanidins | ↓ Triacylglycerols | ↓ FAS mRNA |
250 mg/kg BW | ↑ miR-122 mRNA | |||
3 h | ||||
Luo et al[64], 2012 | Male C57BL/6 mice fed a methionine and choline-deficient high-fat diet | Theaflavin | ↓ Cell ballooning | |
30 mg/kg BW | ↓ Microvesicular and | |||
by intraperitoneal injection | macrovesicular | |||
48, 24, and 2 h before induction of steatosis by ischemia-reperfusion | steatosis | |||
↓ ALT | ||||
↓ Oxidative stress | ||||
↓ Hepatocyte apoptosis | ||||
↓ F4/80-positive cells (inflammatory cells) | ||||
Yoshimura et al[63], 2013 | KKAy mice fed a high-fat diet | Ellagic acid | ↓ Serum ALT, AST, | ↑ FAS mRNA expression = Acaca, SREBP-1c mRNA expression |
0.1% in the diet | ↓ Macrovesicular steatosis | |||
68 d | ↓Triacylglycerols | = ACO mRNA expression | ||
↑ CTP-1a, PPAR-α mRNA expression |
Ref. | Animal model | Polyphenols extract, dose and treatment period length | Effects | Mechanisms |
Feillet-Coudray et al[72], 2009 | Male Wistar rats fed a high-fat diet | Provinol®, a polyphenol extract obtained from red wine | ↓ Macroesteatosis | |
0.2% in the diet | ↓ Lipid droplets | |||
6 wk | ↓ Lipid peroxidation | |||
Aoun et al[73], 2010 | Male Wistar rats fed a high fat diet | Provinol®, a polyphenol extract obtained from red wine | ↓ Triacylglycerols | ↑ SIRT protein expression |
0.2% in the diet | ↓ Macroesteatosis | |||
6 wk | = Fatty acid composition | = SCD1, pAMPK, SREBP-1c, FAS, HNF-4 α, PGC1α and CPT-1a protein expression | ||
Beltrán-Debón et al[68], 2011 | LDLr-/- mice fed a standard diet | Aspalathus linearis L. (rooibos) | Lower steatosis degree | ↑ AMPK protein expression |
10 g/L drinking water | ||||
14 wk | ||||
Tsuruta et al[69], 2011 | db/db mice fed a standard diet | Nelumbo nucifera L. (lotus root) | ↓ 15% Liver weight (tendency) | = CPT-1a activity |
0.5% in the diet | ↓ 62%Triacylglycerols (tendency) | ↓ FAS, ME activity | ||
3 wk | ↓ Transaminases (tendency) | |||
Axling et al[70], 2012 | C57BL/6 J mice fed a high fat diet | Green tea | ↓ Liver weight | ↓ SREBP-1c, PPAR-γ, ACC mRNA (22 wk) |
4% in the diet | ↓ Triacylglycerols | |||
11 and 22 wk | ↓ Serum ALT | |||
Lee et al[67], 2012 | BABL/c mice fed a standard diet Steatosis produced by acetaminophen | Extract of Hibicus sabdariffa L 0.01%, 0.02% or 0.03% in the diet 2 wk | ↓ Liver damage ↓ Liver steatosis ↓ Serum ALT, AST (dose dependent) ↓ Oxidative stress | ↓ p-JNK and AIF, tBid and Bax protein expression |
Wang et al[66], 2012 | Male Wistar rats fed a high-fat diet | Extract of Ginkgo biloba | ↓ Triacylglycerols | ↑ CPT-1a activity |
0.25% in the diet | ↑ CPT-1a, Acaa1, Slc25a20, Hadh, ACO, PPAR-α, RXR-α mRNA expression, | |||
12 wk | ↓ FAS mRNA expression | |||
Park et al[71], 2013 | C57BL/6 J mice fed a high-fat diet | Extract of grape skin | ↓ Triacylglycerols | ↓ FAS, SCD1, PAP |
0.15% in the diet | ↓ Serum leptin | ↑CPT-1a, PPAR-α mRNA expressions and activities | ||
(160 mg/kg bw per day) | ↑ Serum adiponectin | ↓ PPAR-γ, | ||
10 wk | ↑ PPAR-α, CPT-1a mRNA expressions | |||
↑β oxidation, | ||||
= CPT-1a activity | ||||
Yui et al[74], 2013 | OLETF rats fed a standard diet | Humulus lupulus L. (hop pomace) | ↓Liver weight (tendency) | ↓de novo lipogenesis |
1% in the diet | ↓ Triacylglycerols (tendency) | = ACO, CPT-1a activity | ||
70 d |
- Citation: Aguirre L, Portillo MP, Hijona E, Bujanda L. Effects of resveratrol and other polyphenols in hepatic steatosis. World J Gastroenterol 2014; 20(23): 7366-7380
- URL: https://www.wjgnet.com/1007-9327/full/v20/i23/7366.htm
- DOI: https://dx.doi.org/10.3748/wjg.v20.i23.7366