Review Open Access
Copyright ©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastroenterol. Feb 14, 2023; 29(6): 1011-1025
Published online Feb 14, 2023. doi: 10.3748/wjg.v29.i6.1011
Implications of recent neoadjuvant clinical trials on the future practice of radiotherapy in locally advanced rectal cancer
Min Kyu Kang, Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu 41944, South Korea
Min Kyu Kang, Department of Radiation Oncology, Kyungpook National University Chilgok Hospital, Daegu 40414, South Korea
ORCID number: Min Kyu Kang (0000-0002-7962-7054).
Author contributions: Kang MK is the sole author of this manuscript and is solely responsible for its content; Kang MK performed all the research and collected, analyzed, and interpreted all the data, prepared and wrote the manuscript and performed all critical revisions; Kang MK has overall responsibility for this manuscript.
Conflict-of-interest statement: There are no relevant conflicts of interest to report for this article.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Min Kyu Kang, MD, PhD, Associate Professor, Department of Radiation Oncology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu 40414, South Korea. mkkang@knu.ac.kr
Received: November 18, 2022
Peer-review started: November 18, 2022
First decision: November 30, 2022
Revised: December 8, 2022
Accepted: January 29, 2023
Article in press: January 29, 2023
Published online: February 14, 2023

Abstract

Over the last two decades, the standard treatment for locally advanced rectal cancer (LARC) has been neoadjuvant chemoradiotherapy plus total mesorectal excision followed by adjuvant chemotherapy. Total neoadjuvant treatment (TNT) and immunotherapy are two major issues in the treatment of LARC. In the two latest phase III randomized controlled trials (RAPIDO and PRODIGE23), the TNT approach achieved higher rates of pathologic complete response and distant metastasis-free survival than conventional chemoradiotherapy. Phase I/II clinical trials have reported promising response rates to neoadjuvant (chemo)-radiotherapy combined with immunotherapy. Accordingly, the treatment paradigm for LARC is shifting toward methods that increase the oncologic outcomes and organ preservation rate. However, despite the progress of these combined modality treatment strategies for LARC, the radiotherapy details in clinical trials have not changed significantly. To guide future radiotherapy for LARC with clinical and radiobiological evidence, this study reviewed recent neoadjuvant clinical trials evaluating TNT and immunotherapy from a radiation oncologist’s perspective.

Key Words: Rectal cancer, Neoadjuvant therapy, Radiotherapy, Total neoadjuvant treatment, Immunotherapy

Core Tip: In locally advanced rectal cancer (LARC), recent randomized controlled trials have demonstrated the benefits of total neoadjuvant treatment (TNT) in terms of oncologic outcomes and organ preservation. The results of clinical trials of immunotherapy suggest the possibility of pelvic radiotherapy in combination with immunotherapy for LARC. However, the radiotherapy details used in clinical trials have not changed significantly. This study reviewed recent neoadjuvant clinical trials evaluating TNT and immunotherapy from a radiation oncologist’s perspective to guide future radiotherapy for LARC.



INTRODUCTION

Neoadjuvant chemoradiotherapy (CRT) plus total mesorectal excision (TME) has been the standard treatment for locally advanced rectal cancer (LARC) for almost two decades. Although this approach has reduced the local recurrence (LR) rate to < 5%-10%, 20%-30% patients with LARC still experience distant metastasis (DM), a major cause of death[1-3]. Although the role of adjuvant chemotherapy (CT) on survival outcomes has been investigated by several working groups[4,5], the impact of adjuvant CT after neoadjuvant CRT plus TME on survival and ideal candidates for adjuvant CT are unclear[6]. Oxaliplatin-based neoadjuvant CRT, when compared to conventional CRT, showed higher toxicity rates without survival benefit in all phase III trials except one [7-10].

Total neoadjuvant treatment (TNT) and immunotherapy are the two trending issues in the preoperative treatment of LARC. Five phase III randomized controlled trials (RCTs) evaluating the TNT approach have been reported[11-15]. All trials showed significantly higher pathologic complete response (pCR) rates in the TNT group than in the traditional neoadjuvant CRT group. Moreover, two RCTs revealed that TNT significantly improved DM-free survival (DMFS), disease-free survival (DFS), or disease-related treatment failure[13,14]. Several prospective phase I/II studies have reported promising response rates to traditional neoadjuvant treatment combined with immune checkpoint inhibitors (ICIs)[16-19] or ICI alone[20] in LARC, known as an immune-cold tumor.

However, despite these advances in multidisciplinary treatment strategies for LARC, the radiotherapy (RT) details in clinical trials have not changed significantly. Therefore, to guide future RT for LARC with clinical and radiobiological evidence, this study reviewed recent neoadjuvant clinical trials evaluating TNT and ICIs from a radiation oncologist’s perspective.

SUMMARY OF RECENT NEOADJUVANT CLINICAL TRIALS
TNT

The TNT approach brings the systemic adjuvant CT to the preoperative period, which can be administered before or after RT. The TNT approach has several clinical advantages in terms of tumor response, organ preservation, distant control, and long-term survival through early administration of intensive chemotherapeutic agents with a high compliance. The treatment protocols and important findings of RCTs evaluating TNT are summarized in Table 1 and Supplementary Table 1.

Table 1 Recent randomized trials evaluating the total neoadjuvant treatment approach in locally advanced rectal cancer.
Trials
Identifier
Patients
Primary endpoint
Treatment arms
Results (arm A vs B vs C)
POLISH II[11,21]NCT00833131cT4 or fixed cT3 (primary or locally recurrent)R0 resection A: CRT (5-FU+LV #2) → S (→ CT); B: SCRT → FOLFOX4 #3 → S (→ CT)R0: 71% vs 77% (NS); pCR: 12% vs 16% (NS)
FOWARC[12]NCT01211210cT3-4 or cN+3 yr DFSA: CRT (de Gramont #5) → TME → de Gramont #7; B: CRT (mFOLFOX6 #5) → TME → mFOLFOX6 #7; C: mFOLFOX6 #4-6 → TME → mFOLFOX6 #6-8pCR: 14.0% vs 27.5% vs 6.5%; 3 yr DFS: 72.9% vs 77.2% vs 73.5% (NS); 3 yr LF: 8.0% vs 7.0% vs 8.3% (NS); 3 yr OS: 91.3% vs 89.1% vs 90.7% (NS)
RAPIDO[13,109]NCT01558921cT4 or MRF+ or N2 or lateral LN+ or EMVI+3 yr DRTF1A: CRT (cape) → TME → CAPOX #9 or FOLFOX4 #12; B: SCRT → CAPOX #6 or FOLFOX4 #9 → TME3 yr DRTF: 30.4% vs 23.7%2; 3 yr DM: 26.8% vs 20.0%2; pCR: 14% vs 28%2
PRODIGE23[14]NCT01804790cT3-4 Nany3 yr DFSA: CRT (cape) → TME → mFOLFOX6 #12; B: FOLFIRINOX #6 → CRT (cape) → TME → mFOLFOX6 #63 yr DFS: 69% vs 76%2; pCR: 12% vs 28%2
STELLAR[15]NCT02533271cT3-4 or cN+3 yr DFSA: CRT (cape) → TME → CAPOX #6; B: SCRT → CAPOX #4 → TME → CAPOX #63 yr DFS: 62.3% vs 64.5% (NS); 3 yr OS: 75.1% vs 86.5%2; pCR: 11.8% vs 16.6%2
CAO/ARO/AIO-12[22,23]NCT02363374cT3-4 or cN+pCRA: FOLFOX #3 → CRT (5-FU+oxaliplatin) → TME; B: CRT (5-FU+oxaliplatin) → FOLFOX #3→ TMEpCR: 17% vs 25%2
OPRA[24,110]NCT02008656cT3-4N0 or cTanyN1-23 yr DFSA: mFOLFOX6 #8 or CAPOX #5→ CRT → WW or TME; B: CRT → mFOLFOX6 #8 or CAPOX #5 → WW or TME3 yr DFS: 76% vs 76% (NS); 3 yr TME-free survival: 41% vs 53%2
Tang et al[68] ongoingNCT04543695Stage II-III with at least one high-risk factors: MRF+, T4, N2, lateral LN, EMVI+Downstaging (yp0-II, cCR)A: CRT → TME → CAPOX #6; B: CRT → CAPOX #6 → TME or WW; C: CAPOX #6 → CRT → TME or WW(Preliminary) yp0-II: 77.1% vs 84.2% vs 57.1%; pCR + sustained cCR: 22.9% vs 42.1% vs 28.6%
CAO/ARO/AIO-18.1[76] ongoingNCT04246684MRI-defined intermediate and high-risk factors: cT3 low rectal (< 6 cm from AV), cT3c/d middle rectal (≥ 6-12 cm), cT4 tumors, Tany middle/low third of rectum with N+, CRM ≤ 1 mm, EMVI+3 yr organ preservationA: SCRT → CAPOX #6 or mFOLFOX6 #8 → WW or TME; B: CRT (5-FU+oxaliplatin) → CAPOX #4 or mFOLFOX6 #6 → WW or TME

Three trials compared short-course RT (SCRT) followed by consolidation CT and standard CRT (POLISH II[21], RAPIDO[13], and STELLAR[15]). Between the SCRT + CT vs standard CRT groups, both RAPIDO and STELLA showed a higher pCR rate with TNT, which was not different in POLISH II. Notably, 3-year disease-related treatment failure and DMFS were significantly better in the TNT arm of RAPIDO, and 3-year overall survival (OS) was significantly better in the TNT arm of STELLAR. These results support the fact that SCRT followed by consolidation CT with a sufficient RT-to-surgery interval is a good option with a high pCR rate and potential to improve DMFS and OS, although there are differences in stage distributions, duration of consolidation CT, and RT-to-surgery intervals among these trials.

Three trials evaluated the role of induction or consolidation CT in TNT regimens (PRODIGE23[14], CAO/ARO/AIO-12[22,23], and OPRA[24]). PRODIGE23 showed that induction FOLFIRINOX (6 cycles) followed by standard CRT (vs standard CRT) was associated with better pCR, 3-year DFS, and 3-year DMFS rates. CAO/ARO/AIO-12 and OPRA reported no differences in DFS, LR, and DM between the induction and consolidation CT groups. However, the pCR rate in CAO/ARO/AIO-12 and 3-year TME-free survival in OPRA were significantly higher in the consolidation group than in the induction group.

Although the TNT approach for LARC has already been adopted in several practice guidelines[25-28], a one-size-fits-all approach would not be appropriate in many real-world clinical scenarios. Based on the results of the aforementioned RCTs of TNT, Hui et al[29] and Roeder et al[30] introduced their institutional neoadjuvant approach for LARC according to the risk of local and/or distant failure and patients’ desire for organ preservation.

Immunotherapy

Radiation has immunomodulatory effects on the host immune system in addition to the direct tumor cell killing effect[31,32]. In particular, dendritic cells activated by radiation can present tumor antigens in lymph nodes (LNs) and activate CD8+ T cells, which are important for killing primary or distant tumor cells[31,33,34]. However, upregulation of programmed death ligand 1 (PD-L1) expression in tumor cells by interferon-γ produced by CD8+ T cells can lead to radioresistance[35,36]. Thus, the potential of a combination of ICIs and RT has been investigated in various cancers, including LARC[37]. In addition, neoadjuvant treatment changes colorectal cancer to an immunogenic tumor via loss of the mismatch repair (MMR) protein, decrease in mRNA expression levels of MMR-related genes, and increase in the tumor mutational burden (TMB)[38-40]. Several early-phase clinical trials have reported higher response rates to neoadjuvant treatment combined with ICIs for LARC, when compared to historical rates with conventional CRT. Their treatment protocols and important findings are summarized in Table 2 and Supplementary Table 1.

Table 2 Recent prospective clinical trials using immune checkpoint inhibitors as a component of neoadjuvant treatment for locally advanced rectal cancer.
Trials
Identifier
Patients
Primary endpoint
Treatment
Results
VOLTAGE-A[16]NCT02948348cT3-4 Nany (regardless of MMR status)pCRCRT (cape) → Nivolumab #5 → TME (→ mFOLFOX6/CAPOX)pCR: 30% for MSS, 60% for MSI-H
AVANA[17]NCT03854799cN+ or cT4 or high-risk cT3 (CRM ≤ 1 mm, ≤ 6 cm from AV, or T3c/d)pCRCRT (cape) + Avelumab #6 → TMEpCR: 23%
R-IMMUNE[18]NCT03127007Stage II or IIIpCR, safetyCRT(5-FU) + Atezolizumab #4 → SpCR: 24%
NRG-GI002[19]NCT02921256Stage II or III with at least 1 of the following criteria: cT3-4 ≤ 5 cm from AV, any cT4 or tumor within 3 mm of MRF, cN2, not candidates for sphincter-sparing surgery at presentationNeoadjuvant rectal scoreA: mFOLFOX6 #6 → CRT (cape) → TME; B: mFOLFOX6 #6 → CRT (cape) + Pembrolizumab #6 → TMENAR score: 14.08 vs 11.53 (NS); pCR: 29.4% vs 31.9% (NS)
AVERECTAL[41,111,112]NCT03503630cT2N+ or cT3-4aNanypCRSCRT → mFOLFOX6 + Avelumab #6 → TMEpCR: 37.5%
Lin et al[42]NCT04231552Stage II or IIIpCRSCRT → CAPOX + Camrelizumab #2 →TMEpCR: 48.1% (13/27), 46.2% (12/26) for pMMR, 100% (1/1) for dMMR
TORCH[43,113] ongoingNCT04518280cT3-4 or cN+cCR or pCRA: SCRT → CAPOX + toripalimab #6 → TME or WW; B: CAPOX + toripalimab #2 → SCRT → CAPOX + toripalimab #4 → TME or WW(Preliminary) cCR + pCR: 81.3% (13/16 MSS patients); group A (n = 7): cCR 1, pCR 4, near pCR 1; group B (n = 9): cCR 4, pCR 4
Cercek et al[20] ongoingNCT04165772cT3-4 or cN+ with dMMR or MSI-HcCR, pCR, overall responseDostarlimab #9 → if cCR → WW; if residual+ → CRT → WW (cCR) or TME (residual+)cCR: 100%
PRIME-RT[45] ongoingNCT04621370cT3b+ or EMVI+ or CRM ≤ 2 mm or a low rectal tumor requiring abdomino-perineal excisioncCR or pCRA: (SCRT → mFOLFOX6 #6) + durvalumab #4 → S or WW; B: (CRT → mFOLFOX6 #4) + durvalumab #4 → S or WW
EA2201[46] ongoingNCT04751370cT3-4 or cN+ with dMMR or MSI-HpCRIpilimumab/Nivolumab #2 → SCRT → Ipilimumab/Nivolumab #2 → TME
Qiu[47] ongoingNCT04636008cT2 or higher with dMMR or MSI-HAdverse reaction after neoadjuvant treatment and perioperative complicationsSCRT + Sintilimab #3 → TME or WW

Four trials evaluated tumor response to CRT combined with concurrent and/or consolidation ICIs. Five cycles of consolidation nivolumab after CRT in the VOLTAGE-A phase I/II trial achieved pCR rates of 30% in patients with microsatellite-stable (MSS) and 60% in patients with high microsatellite instability (MSI-H)[16]. Two trials reported pCR rates after CRT with concurrent and consolidation ICIs; 23% in the AVANA phase II trial[17] using 6 cycles of avelumab and 24% in the R-IMMUNE phase Ib/II trial[18] using 4 cycles of atezolizumab. The NRG-GI002 phase II RCT compared two groups of induction mFOLFOX6 (6 cycles) followed by CRT with or without concurrent and consolidation pembrolizumab; the pCR rate was not different between the groups (31.9% vs 29.4%)[19]. Two phase II trials evaluating SCRT followed by consolidation CT and ICIs reported the highest pCR rates; 37.5% in the AVERECTAL trial[41] using 6 cycles of mFOLFOX6 plus avelumab and 48.1% in the trial by Lin et al[42] using 2 cycles of CAPOX plus camrelizumab. Notably, an ongoing TORCH trial reported a preliminary clinical complete response (cCR) or pCR rate of 81.3% in 16 MSS patients who received SCRT-based induction or consolidation CAPOX plus toripalimab[43]. In addition, these studies enrolled patients regardless of the MMR status, two of which reported the pCR rate according to the MMR status[16,42]. Although these promising results should be verified in large-scale RCTs, the results indicate the potential benefits of the combination of pelvic RT and ICIs in the aspect of organ preservation and survival outcomes, especially for patients with MSS LARC.

Despite the proportion of patients with deficient MMR (dMMR) or MSI-H LARC being as low as 5%-10%, neoadjuvant ICIs with or without CRT or SCRT for dMMR/MSI-H LARC are gaining attention owing to their high response rates[44]. Most recently, Cercek et al[20] preliminarily reported that all 12 consecutive patients with dMMR LARC achieved cCR after 9 cycles of dostarlimab and were under watch-and-wait (WW) without CRT, surgery, or any recurrence for 6-25 mo. Several ongoing trials are evaluating the response rate and toxicities of SCRT combined with ICIs in patients with dMMR/MSI-H LARC[45-47] (Table 2 and Supplementary Table 1).

RT in clinical trials

The RT dose, field, and techniques were similar among the TNT and immunotherapy trials described above (Supplementary Table 1). The clinical target volume (CTV) included the primary tumor, regional LNs, and pelvic regions at risk, as proposed by Roels et al[48] and the Radiation Therapy Oncology Group[49], as long as its definition could be confirmed in the protocol or published article. A total dose of 50-50.4 Gy at 1.8-2 Gy per fraction and 45 Gy at 1.8 Gy per fraction were administered to the gross tumor volume (GTV) and elective pelvic areas during CRT, respectively. All trials using SCRT administered 25 Gy in 5 fractions to the CTV. Some studies allowed an additional boost dose to the GTV (up to a total dose of 54-56 Gy). Intensity-modulated RT (IMRT) or 3-dimensional conformal RT (3D-RT) were used. Although the treatment outcomes of the aforementioned clinical trials using these traditional target volumes and RT doses are promising, better outcomes can be achieved if RT parameters can be optimized for TNT and immunotherapy. The factors to be considered when using RT as a part of TNT or in combination with ICIs will be discussed in later sections.

CLINICAL IMPLICATIONS
Paradigm shift of neoadjuvant treatment regiments

Neoadjuvant CRT (45-50.4 Gy in 25-28 fractions concurrently with 5-fluorouracil or capecitabine) has been recommended in LARC as it improves the resectability, sphincter preservation, and local control rates. Although SCRT (25 Gy in 5 fractions without CT) with delayed surgery is considered effective as CRT in terms of sphincter preservation, R0 resection, and local control, SCRT has not been widely used because of insufficient downstaging and high toxicity[50-52]. On the other hand, many efforts have been made to omit or selectively use pelvic RT in LARC to avoid RT-related toxicities[53,54]. LARC with a low risk of LR can be successfully treated without preoperative or postoperative pelvic RT[25]. However, these approaches require radical resection, which is associated with surgery-related complications. In addition, the WW strategy became doubtful when Habr-Gama et al[55] reported excellent long-term outcomes of nonoperative management for patients with LARC who achieved cCR after CRT (50.4 Gy with concurrent 5-fluorouracil and leucovorin) in 2004.

Currently, the neoadjuvant treatment paradigm is shifting in several ways owing to the excellent results of TNT trials[56]. TNT regimens combined with CRT or SCRT are recommended by the National Comprehensive Cancer Network guidelines[57] and are increasingly employed in clinical practice[56]. SCRT is regaining attention because of the following advantages when combined with TNT and immunotherapy: Short treatment time, high compliance, few side effects, and potential synergistic effects with immunotherapy. The WW strategy is being accepted in patients achieving cCR after neoadjuvant treatment, owing to the accumulation of clinical evidence supporting the safety of WW[58]. Although there was no difference in DFS, LR, and OS between mFOLFOX6 with or without RT in FOWARC[12] (Table 1 and Supplementary Table 1), a higher pCR rate in patients receiving RT supports the use of pelvic RT with a higher chance of organ preservation. Even in early rectal cancer with cT2-3abN0, CRT or SCRT followed by local excision or WW has achieved excellent pCR or organ preservation rates[59,60]. These trends emphasize the importance of RT in future neoadjuvant treatment regimens for rectal cancers.

Organ preservation

There is a growing demand for organ preservation to avoid surgical complications or permanent colostomy, which translates into an improved quality of life after treatment for LARC. Various efforts have been made to increase the cCR rate[61]: Escalating the radiation dose, increasing the interval between RT and surgery, and adding consolidation CT before surgery[58,62,63]. When combined with conventional CRT, these approaches increase the rate of cCR, but not survival outcomes[64-66].

A meta-analysis revealed that the TNT approach showed a better pCR rate and survival outcomes than conventional CRT[67], suggesting that the TNT approach is a good option for organ preservation with survival benefits. Based on the results of CAO/ARO/AIO-12[22,23] and OPRA[24], consolidation CT is preferred when using CRT in the WW strategy. Preliminary results of a Chinese phase II RCT also showed the highest CR rate (pCR + sustained cCR) in the consolidation group (22.9% in the CRT group vs 28.6% in the induction group vs 42.1% in the consolidation group)[68].

Although data on the WW strategy after SCRT are limited, SCRT followed by consolidation CT appears to be an option for organ preservation based on the following evidence. SCRT followed by at least 4 cycles of consolidation CT was associated with significantly better pCR and DFS rates than conventional CRT in a meta-analysis[69]. Studies using SCRT followed by consolidation CT reported similar cCR, LR, and TME-free survival rates as those reported in studies using CRT[24,70,71]. Based on the results of a meta-analysis, at least 4 cycles of consolidation CT after SCRT should be considered[69]. However, the optimal duration of consolidation CT needs to be determined to avoid undertreatment or overtreatment.

Based on the high response rates reported in the AVERECTAL[41], Lin et al[42]'s, and TROCH[43] trials, despite the limited data on the role of immunotherapy combined with (C)RT, SCRT-based TNT plus ICIs seems plausible for the WW strategy in MSS LARC. In patients who cannot tolerate intensive CT, CRT with concurrent or consolidation ICIs may be an option for organ preservation, given that the pCR rate (23%-30%) of these approaches seems to be higher than that of traditional CRT[16-18]. The results of ongoing trials of SCRT combined with ICIs (Table 2 and Supplementary Table 1) are anticipated because hypofractionated RT has better immunostimulatory effects than prolonged RT; this will be discussed in a later section. Induction CT combined with ICIs is discouraged based on the results of NRG-GI002[19]. Extremely high response rates (up to 100%) to immunotherapy alone, shown in retrospective[72] and prospective[20] studies, support the use of immunotherapy alone for dMMR LARC. However, in dMMR LARC with high tumor burden, immunotherapy alone may be insufficient to eliminate all the tumor cells in the body when considering the association between tumor burden and the response to immunotherapy[73]; therefore, the combination of RT and immunotherapy may be needed for dMMR LARC. To provide individualized treatment, future trials should focus on identifying the optimal combination of RT, CT, and ICIs.

RT-RELATED ISSUES

Although the treatment outcomes of the aforementioned clinical trials using traditional target volumes and radiation doses are promising, the current practice of RT for LARC may not be optimal for the combination with TNT and ICIs. The following sections provide clinical and radiobiological evidence for the RT details that would be suitable for the combination therapies in LARC.

RT dose without immunotherapy

The current guidelines typically recommend the conventional long-course RT of 50-50.4 Gy in 25-28 fractions with concurrent CT as neoadjuvant treatment for LARC, with a total dose of ≥ 54 Gy in patients with unresectable tumors or patients who desire organ preservation[25,27,57]. Appelt et al[74] reported a positive dose-response relationship for pathologic tumor regression, and two meta-analyses revealed a high pCR rate of 24%-28% with a total dose of ≥ 54 Gy (mostly 1.8-2.2 Gy per fraction) with or without CT intensification[66,75]. However, because no dose-response relationship or survival benefit has been proven for a total dose > 54 Gy, the impact of such high doses is unclear[66,75]. In addition, surgical complications can occur more frequently with equivalent dose in 2 Gy fractions > 58.9 Gy[66]. Thus, total doses of 54-56 Gy with induction or consolidation CT have been used in studies with the intent of organ preservation in LARC[24,62,76].

Traditionally, a total dose of 25 Gy in 5 fractions has been used for SCRT as the sole neoadjuvant treatment for LARC, with a pCR rate of approximately 10%[77]. SCRT (25 Gy in 5 fractions) followed by consolidation CT achieved a higher pCR rate (17%-28%) than conventional CRT (12%-14%)[13,15]. A single institutional retrospective study reported that SCRT (25-30 Gy in 5 fractions) followed by FOLFOX or CAPOX achieved a cCR rate of 50%, persistent cCR rate of 79% in the WW cohort, and a 2-year TME-free survival rate of 40% (69% in patients with cCR)[71]. Although the same institute reported a high 1-year cCR rate of 70% in 19 patients who were treated with dose-escalated SCRT (30 Gy to the primary tumor and 35 Gy to the extramesorectal LNs in 5 fractions) followed by FOLFOX or CAPOX[78], further studies are warranted to evaluate the benefits and toxicities of radiation dose escalation in SCRT-based TNT due to a paucity of data in this area.

RT dose with immunotherapy

Recent prospective studies combining ICIs with RT (Table 2) used traditional dose-fractionation schedules in LARC: Conventional RT (45-50.4 Gy with 1.8-2 Gy per fraction) or hypofractionated RT (25 Gy with 5 Gy per fraction). Different immunological effects between conventionally fractionated and hypofractionated schedules have been reported, mainly in murine cancer models.

In a murine colon cancer model (CT26), conventional RT (5 × 2 Gy or 18 × 2 Gy) exerted immunosuppressive effects by upregulating PD-L1 expression in tumor cells and inducing immunosuppressive myeloid cells (myeloid-derived suppressor cells and tumor-associated macrophages 2)[36,79]. The negative impact on local tumor control and survival of mice was reversed by the addition of programmed death receptor-1 (PD-1)/PD-L1 inhibitors to fractionated RT. In addition, the combination of ICIs and CRT is supported by an increase in TMB, a known predictor of response to immunotherapy[80], in patients with LARC treated with neoadjuvant CRT[40,81]. Seo et al[40] reported that CRT decreased the mRNA expression levels of 23 MMR-related genes in LARC. Furthermore, loss of the MMR protein has been observed after neoadjuvant CRT for LARC[38-40,82]. These results explain the high pCR rates (23%-30%) of conventional CRT (45-50.4 Gy in 25-28 fractions) combined with ICIs in VOLTAGE-A[16], AVANA[17], and R-IMMUNE[18]. With insufficient data, it is unclear whether RT dose escalation in neoadjuvant CRT for LARC is beneficial.

Hypofractionated RT using a large fractional dose appears to be more efficacious when combined with ICIs, compared with conventional RT. Preclinical studies have reported that various schedules using 5-8 Gy per fraction elicited CD8+ T cell-mediated immune responses effectively in irradiated local tumors and non-irradiated distant tumors (the abscopal effect) when combined with various immunotherapeutic agents[34,79,83]. Dendritic cells had a higher homing ability to lymphoid tissues when they received an RT dose ≥ 5 Gy than when they received 10 × 2 Gy[84]. Radiation-induced lymphopenia is a known negative prognostic factor for tumor response or oncologic outcomes in various solid tumors, including rectal cancer[85-87]. Moreover, persistent lymphocyte depletion is associated with poor treatment outcomes after immunotherapy for various solid tumors[88]. Hypofractionated schedules was associated with less lymphocyte depletion or faster recovery after treatment in several tumor sites[89-92]; this supports the use of neoadjuvant SCRT in combination with immunotherapy over protracted conventional CRT. The higher tumor response rates of SCRT followed by consolidation CT plus ICI in prospective studies[41-43] (vs in trials of CRT plus ICIs[16-18]) may facilitate the use of SCRT in the neoadjuvant treatment regimen for LARC, although the exact causes of this difference cannot be explained, except by the difference in the use of consolidation CT. Nonetheless, since it is unknown whether a combination of the traditional regimen of 25 Gy in 5 fractions with immunotherapy is optimal, further studies are warranted to determine the optimal dose-fractionation regimen, especially in terms of dose escalation.

RT field

Traditional RT fields include GTVs and regional lymphatics with subclinical nodal metastases. When RT is combined with immunotherapy, elective nodal irradiation (ENI) is not recommended for the following reasons. First, irradiation to tumor-draining LNs can reduce RT-mediated immune responses. Tumor-draining LNs where cytotoxic CD8+ T cells are activated by dendritic cells, are important for RT-induced immunologic cell death[33,93]. In a murine melanoma model (B16F10), irradiation to tumors (1 × 10 Gy) and tumor-draining LNs (3 × 3 Gy) reduced the response of both irradiated and non-irradiated tumors compared to tumor-only irradiation[93]. In another murine colorectal carcinoma model (MC38), a single 12-Gy ENI reduced intratumoral infiltration of functional antigen-specific CD8+ T cells[94]. Second, severe lymphopenia, which has a negative effect on immunotherapy, can occur because of the large RT field that includes the elective nodal area[95,96].

Although a CTV including the primary tumor and mesorectum below the S2/S3 interspace was safe in patients with T2 low-lying/T3, N0-N1 rectal cancers without lateral LN metastasis in a prospective phase II trial[97], there is no clinical evidence against ENI in the neoadjuvant setting of LARC. Future studies should weigh the immunologic benefit of no ENI and risk of recurrence following undertreated metastatic LNs. Nevertheless, since the tumor response to whole pelvic RT combined with ICIs is promising in early-phase clinical trials (Table 2 and Supplementary Table 1), long-term patterns of failure and survival data are anticipated.

RT planning

For a long time, radiation oncologists have tried to lower radiation doses to normal pelvic organs to reduce acute and chronic gastrointestinal and genitourinary toxicities after pelvic RT. The importance of lymphocyte-sparing RT has recently emerged in the era of immunotherapy[98]. There are several reasons supporting the need of lymphocyte sparing during the neoadjuvant pelvic RT of LARC. Approximately one-quarter of the proliferating bone marrow of the body is in the pelvis[99]. Permanent aplasia in irradiated bone may occur with irradiations > 30 Gy[100]. Fatty changes in the pelvic bone marrow are a common observation after CRT[101]. Pelvic RT for pelvic malignancies can cause prolonged lymphocyte depletion[102,103].

In addition to the dose-fractionation schedule and target volume size, the pelvic bone marrow and lymphocyte count can be influenced by the dose rate and delivery techniques such as 3D-RT and IMRT. Although IMRT can reduce acute gastrointestinal and genitourinary toxicities in LARC[104,105], it is unclear whether IMRT is superior to 3D-RT in terms of sparing of active bone marrow (or lymphocytes)[86,95]. The estimated mean dose to the entire circulating blood pool after 60 Gy in 30 fractions for glioblastoma was similar for 3D-RT and IMRT with a sliding window technique (2.4 Gy and 2.7 Gy)[95]. Patients with LARC treated with preoperative pelvic RT with helical tomotherapy showed significantly higher rates of post-treatment neutrophil-lymphocyte ratios ≥ 4 than those treated with 3D-RT[86]. The impact of delivery techniques such as volumetric-modulated RT (VMAT) is unclear, which can deliver radiation doses faster with less low-dose spillage than other IMRT delivery modes such as step-and-shoot and sliding window techniques[106]. Kuncman et al[107] reported an association between the dose of active bone marrow on magnetic resonance imaging and absolute lymphocyte count nadir and platelet nadir. Huang et al[108] reported a lower incidence of acute hematologic toxicity with pelvic bone marrow-sparing IMRT (IMRT with sliding window or VMAT) using dosimetric constraints for the pelvic bone marrow of V10 ≤ 85%, V20 ≤ 65%, and V30 ≤ 45% (VX = volume receiving X Gy) than with non-sparing IMRT in patients with LARC treated with CRT. Therefore, it is necessary to determine the optimal dose constraints for the pelvic bone (or bone marrow) and proper dose delivery techniques to enhance the effects of immunotherapy.

CONCLUSION

Recent phase II/III RCTs have confirmed the benefits of the TNT approach combined with conventional CRT or SCRT in terms of oncologic outcomes and organ preservation in LARC. The results of prospective phase I/II studies suggest the possibility of conventional CRT or SCRT in combination with immunotherapy for LARC. Preclinical and clinical evidence suggests the RT details which may be suitable for the neoadjuvant pelvic RT as a part of TNT or in combination with immunotherapy. However, further studies are warranted to identify optimal RT strategies with the potential of maximizing the effects of neoadjuvant treatment with TNT and immunotherapy.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed.

Peer-review model: Single blind

Specialty type: Gastroenterology and hepatology

Country/Territory of origin: South Korea

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): B

Grade C (Good): C

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: MI SC, China; Yao J, China S-Editor: Fan JR L-Editor: A P-Editor: Fan JR

References
1.  Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, Becker H, Raab HR, Villanueva MT, Witzigmann H, Wittekind C, Beissbarth T, Rödel C. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the German CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30:1926-1933.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1251]  [Cited by in F6Publishing: 1352]  [Article Influence: 112.7]  [Reference Citation Analysis (0)]
2.  Bosset JF, Calais G, Mineur L, Maingon P, Stojanovic-Rundic S, Bensadoun RJ, Bardet E, Beny A, Ollier JC, Bolla M, Marchal D, Van Laethem JL, Klein V, Giralt J, Clavère P, Glanzmann C, Cellier P, Collette L; EORTC Radiation Oncology Group. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014;15:184-190.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 486]  [Cited by in F6Publishing: 508]  [Article Influence: 50.8]  [Reference Citation Analysis (0)]
3.  Hong YS, Kim SY, Lee JS, Nam BH, Kim KP, Kim JE, Park YS, Park JO, Baek JY, Kim TY, Lee KW, Ahn JB, Lim SB, Yu CS, Kim JC, Yun SH, Kim JH, Park JH, Park HC, Jung KH, Kim TW. Oxaliplatin-Based Adjuvant Chemotherapy for Rectal Cancer After Preoperative Chemoradiotherapy (ADORE): Long-Term Results of a Randomized Controlled Trial. J Clin Oncol. 2019;37:3111-3123.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 86]  [Article Influence: 17.2]  [Reference Citation Analysis (0)]
4.  Hong YS, Nam BH, Kim KP, Kim JE, Park SJ, Park YS, Park JO, Kim SY, Kim TY, Kim JH, Ahn JB, Lim SB, Yu CS, Kim JC, Yun SH, Park JH, Park HC, Jung KH, Kim TW. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2014;15:1245-1253.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 268]  [Cited by in F6Publishing: 270]  [Article Influence: 27.0]  [Reference Citation Analysis (0)]
5.  Breugom AJ, van Gijn W, Muller EW, Berglund Å, van den Broek CBM, Fokstuen T, Gelderblom H, Kapiteijn E, Leer JWH, Marijnen CAM, Martijn H, Meershoek-Klein Kranenbarg E, Nagtegaal ID, Påhlman L, Punt CJA, Putter H, Roodvoets AGH, Rutten HJT, Steup WH, Glimelius B, van de Velde CJH. Adjuvant chemotherapy for rectal cancer patients treated with preoperative (chemo)radiotherapy and total mesorectal excision: a Dutch Colorectal Cancer Group (DCCG) randomized phase III trial. Ann Oncol. 2015;26:696-701.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 230]  [Cited by in F6Publishing: 258]  [Article Influence: 25.8]  [Reference Citation Analysis (0)]
6.  Breugom AJ, Swets M, Bosset JF, Collette L, Sainato A, Cionini L, Glynne-Jones R, Counsell N, Bastiaannet E, van den Broek CB, Liefers GJ, Putter H, van de Velde CJ. Adjuvant chemotherapy after preoperative (chemo)radiotherapy and surgery for patients with rectal cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:200-207.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 350]  [Cited by in F6Publishing: 381]  [Article Influence: 42.3]  [Reference Citation Analysis (0)]
7.  Aschele C, Cionini L, Lonardi S, Pinto C, Cordio S, Rosati G, Artale S, Tagliagambe A, Ambrosini G, Rosetti P, Bonetti A, Negru ME, Tronconi MC, Luppi G, Silvano G, Corsi DC, Bochicchio AM, Chiaulon G, Gallo M, Boni L. Primary tumor response to preoperative chemoradiation with or without oxaliplatin in locally advanced rectal cancer: pathologic results of the STAR-01 randomized phase III trial. J Clin Oncol. 2011;29:2773-2780.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 544]  [Cited by in F6Publishing: 551]  [Article Influence: 42.4]  [Reference Citation Analysis (0)]
8.  Gérard JP, Azria D, Gourgou-Bourgade S, Martel-Lafay I, Hennequin C, Etienne PL, Vendrely V, François E, de La Roche G, Bouché O, Mirabel X, Denis B, Mineur L, Berdah JF, Mahé MA, Bécouarn Y, Dupuis O, Lledo G, Seitz JF, Bedenne L, Juzyna B, Conroy T. Clinical outcome of the ACCORD 12/0405 PRODIGE 2 randomized trial in rectal cancer. J Clin Oncol. 2012;30:4558-4565.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 289]  [Cited by in F6Publishing: 286]  [Article Influence: 23.8]  [Reference Citation Analysis (0)]
9.  O'Connell MJ, Colangelo LH, Beart RW, Petrelli NJ, Allegra CJ, Sharif S, Pitot HC, Shields AF, Landry JC, Ryan DP, Parda DS, Mohiuddin M, Arora A, Evans LS, Bahary N, Soori GS, Eakle J, Robertson JM, Moore DF Jr, Mullane MR, Marchello BT, Ward PJ, Wozniak TF, Roh MS, Yothers G, Wolmark N. Capecitabine and oxaliplatin in the preoperative multimodality treatment of rectal cancer: surgical end points from National Surgical Adjuvant Breast and Bowel Project trial R-04. J Clin Oncol. 2014;32:1927-1934.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 295]  [Cited by in F6Publishing: 300]  [Article Influence: 30.0]  [Reference Citation Analysis (0)]
10.  Rödel C, Graeven U, Fietkau R, Hohenberger W, Hothorn T, Arnold D, Hofheinz RD, Ghadimi M, Wolff HA, Lang-Welzenbach M, Raab HR, Wittekind C, Ströbel P, Staib L, Wilhelm M, Grabenbauer GG, Hoffmanns H, Lindemann F, Schlenska-Lange A, Folprecht G, Sauer R, Liersch T; German Rectal Cancer Study Group. Oxaliplatin added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemotherapy of locally advanced rectal cancer (the German CAO/ARO/AIO-04 study): final results of the multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2015;16:979-989.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 433]  [Cited by in F6Publishing: 471]  [Article Influence: 52.3]  [Reference Citation Analysis (0)]
11.  Ciseł B, Pietrzak L, Michalski W, Wyrwicz L, Rutkowski A, Kosakowska E, Cencelewicz A, Spałek M, Polkowski W, Jankiewicz M, Styliński R, Bębenek M, Kapturkiewicz B, Maciejczyk A, Sadowski J, Zygulska J, Zegarski W, Jankowski M, Las-Jankowska M, Toczko Z, Żelazowska-Omiotek U, Kępka L, Socha J, Wasilewska-Tesluk E, Markiewicz W, Kładny J, Majewski A, Kapuściński W, Suwiński R, Bujko K; Polish Colorectal Study Group. Long-course preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for clinical T4 and fixed clinical T3 rectal cancer: long-term results of the randomized Polish II study. Ann Oncol. 2019;30:1298-1303.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 98]  [Cited by in F6Publishing: 126]  [Article Influence: 31.5]  [Reference Citation Analysis (0)]
12.  Deng Y, Chi P, Lan P, Wang L, Chen W, Cui L, Chen D, Cao J, Wei H, Peng X, Huang Z, Cai G, Zhao R, Xu L, Zhou H, Wei Y, Zhang H, Zheng J, Huang Y, Zhou Z, Cai Y, Kang L, Huang M, Wu X, Peng J, Ren D, Wang J. Neoadjuvant Modified FOLFOX6 With or Without Radiation Versus Fluorouracil Plus Radiation for Locally Advanced Rectal Cancer: Final Results of the Chinese FOWARC Trial. J Clin Oncol. 2019;37:3223-3233.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 117]  [Cited by in F6Publishing: 174]  [Article Influence: 34.8]  [Reference Citation Analysis (0)]
13.  Bahadoer RR, Dijkstra EA, van Etten B, Marijnen CAM, Putter H, Kranenbarg EM, Roodvoets AGH, Nagtegaal ID, Beets-Tan RGH, Blomqvist LK, Fokstuen T, Ten Tije AJ, Capdevila J, Hendriks MP, Edhemovic I, Cervantes A, Nilsson PJ, Glimelius B, van de Velde CJH, Hospers GAP; RAPIDO collaborative investigators. Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:29-42.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 458]  [Cited by in F6Publishing: 601]  [Article Influence: 200.3]  [Reference Citation Analysis (0)]
14.  Conroy T, Bosset JF, Etienne PL, Rio E, François É, Mesgouez-Nebout N, Vendrely V, Artignan X, Bouché O, Gargot D, Boige V, Bonichon-Lamichhane N, Louvet C, Morand C, de la Fouchardière C, Lamfichekh N, Juzyna B, Jouffroy-Zeller C, Rullier E, Marchal F, Gourgou S, Castan F, Borg C; Unicancer Gastrointestinal Group and Partenariat de Recherche en Oncologie Digestive (PRODIGE) Group. Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2021;22:702-715.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 175]  [Cited by in F6Publishing: 409]  [Article Influence: 136.3]  [Reference Citation Analysis (0)]
15.  Jin J, Tang Y, Hu C, Jiang LM, Jiang J, Li N, Liu WY, Chen SL, Li S, Lu NN, Cai Y, Li YH, Zhu Y, Cheng GH, Zhang HY, Wang X, Zhu SY, Wang J, Li GF, Yang JL, Zhang K, Chi Y, Yang L, Zhou HT, Zhou AP, Zou SM, Fang H, Wang SL, Zhang HZ, Wang XS, Wei LC, Wang WL, Liu SX, Gao YH, Li YX. Multicenter, Randomized, Phase III Trial of Short-Term Radiotherapy Plus Chemotherapy Versus Long-Term Chemoradiotherapy in Locally Advanced Rectal Cancer (STELLAR). J Clin Oncol. 2022;40:1681-1692.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 65]  [Cited by in F6Publishing: 104]  [Article Influence: 52.0]  [Reference Citation Analysis (0)]
16.  Bando H, Tsukada Y, Inamori K, Togashi Y, Koyama S, Kotani D, Fukuoka S, Yuki S, Komatsu Y, Homma S, Taketomi A, Uemura M, Kato T, Fukui M, Wakabayashi M, Nakamura N, Kojima M, Kawachi H, Kirsch R, Yoshida T, Suzuki Y, Sato A, Nishikawa H, Ito M, Yoshino T. Preoperative Chemoradiotherapy plus Nivolumab before Surgery in Patients with Microsatellite Stable and Microsatellite Instability-High Locally Advanced Rectal Cancer. Clin Cancer Res. 2022;28:1136-1146.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 42]  [Article Influence: 21.0]  [Reference Citation Analysis (0)]
17.  Salvatore L, Bensi M, Corallo S, Bergamo F, Pellegrini I, Rasola C, Borelli B, Tamburini E, Randon G, Galuppo S, Boccaccino A, Viola MG, Auriemma A, Fea E, Barbara C, Bustreo S, Smiroldo V, Barbaro B, Gambacorta MA, Tortora G. Phase II study of preoperative (PREOP) chemoradiotherapy (CTRT) plus avelumab (AVE) in patients (PTS) with locally advanced rectal cancer (LARC): The AVANA study. J Clin Oncol. 2021;39 Suppl:3511.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 9]  [Article Influence: 3.0]  [Reference Citation Analysis (1)]
18.  Carrasco J, Schröder D, Sinapi I, De Cuyper A, Beniuga G, Delmarcelle S, Laethem JLv, Huyghe N, Bar I, Hendlisz A, Haustermans KM, Delaunoit T, Coche JC, Van Ooteghem G, Boulanger AS, Baldin P, Van den Eynde M. R-IMMUNE interim analysis: A phase Ib/II study to evaluate safety and efficacy of atezolizumab combined with radio-chemotherapy in a preoperative setting for patients with localized rectal cancer. Ann Oncol. 2021;32 Suppl:S537.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (1)]
19.  Rahma OE, Yothers G, Hong TS, Russell MM, You YN, Parker W, Jacobs SA, Colangelo LH, Lucas PC, Gollub MJ, Hall WA, Kachnic LA, Vijayvergia N, O'Rourke MA, Faller BA, Valicenti RK, Schefter TE, George S, Kainthla R, Stella PJ, Sigurdson E, Wolmark N, George TJ. Use of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: Initial Results From the Pembrolizumab Arm of a Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021;7:1225-1230.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 75]  [Article Influence: 25.0]  [Reference Citation Analysis (0)]
20.  Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, El Dika IH, Segal N, Shcherba M, Sugarman R, Stadler Z, Yaeger R, Smith JJ, Rousseau B, Argiles G, Patel M, Desai A, Saltz LB, Widmar M, Iyer K, Zhang J, Gianino N, Crane C, Romesser PB, Pappou EP, Paty P, Garcia-Aguilar J, Gonen M, Gollub M, Weiser MR, Schalper KA, Diaz LA Jr. PD-1 Blockade in Mismatch Repair-Deficient, Locally Advanced Rectal Cancer. N Engl J Med. 2022;386:2363-2376.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 595]  [Cited by in F6Publishing: 481]  [Article Influence: 240.5]  [Reference Citation Analysis (0)]
21.  Bujko K, Wyrwicz L, Rutkowski A, Malinowska M, Pietrzak L, Kryński J, Michalski W, Olędzki J, Kuśnierz J, Zając L, Bednarczyk M, Szczepkowski M, Tarnowski W, Kosakowska E, Zwoliński J, Winiarek M, Wiśniowska K, Partycki M, Bęczkowska K, Polkowski W, Styliński R, Wierzbicki R, Bury P, Jankiewicz M, Paprota K, Lewicka M, Ciseł B, Skórzewska M, Mielko J, Bębenek M, Maciejczyk A, Kapturkiewicz B, Dybko A, Hajac Ł, Wojnar A, Leśniak T, Zygulska J, Jantner D, Chudyba E, Zegarski W, Las-Jankowska M, Jankowski M, Kołodziejski L, Radkowski A, Żelazowska-Omiotek U, Czeremszyńska B, Kępka L, Kolb-Sielecki J, Toczko Z, Fedorowicz Z, Dziki A, Danek A, Nawrocki G, Sopyło R, Markiewicz W, Kędzierawski P, Wydmański J; Polish Colorectal Study Group. Long-course oxaliplatin-based preoperative chemoradiation versus 5 × 5 Gy and consolidation chemotherapy for cT4 or fixed cT3 rectal cancer: results of a randomized phase III study. Ann Oncol. 2016;27:834-842.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 236]  [Cited by in F6Publishing: 260]  [Article Influence: 32.5]  [Reference Citation Analysis (0)]
22.  Fokas E, Allgäuer M, Polat B, Klautke G, Grabenbauer GG, Fietkau R, Kuhnt T, Staib L, Brunner T, Grosu AL, Schmiegel W, Jacobasch L, Weitz J, Folprecht G, Schlenska-Lange A, Flentje M, Germer CT, Grützmann R, Schwarzbach M, Paolucci V, Bechstein WO, Friede T, Ghadimi M, Hofheinz RD, Rödel C; German Rectal Cancer Study Group. Randomized Phase II Trial of Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer: CAO/ARO/AIO-12. J Clin Oncol. 2019;37:3212-3222.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 186]  [Cited by in F6Publishing: 270]  [Article Influence: 54.0]  [Reference Citation Analysis (0)]
23.  Fokas E, Schlenska-Lange A, Polat B, Klautke G, Grabenbauer GG, Fietkau R, Kuhnt T, Staib L, Brunner T, Grosu AL, Kirste S, Jacobasch L, Allgäuer M, Flentje M, Germer CT, Grützmann R, Hildebrandt G, Schwarzbach M, Bechstein WO, Sülberg H, Friede T, Gaedcke J, Ghadimi M, Hofheinz RD, Rödel C; German Rectal Cancer Study Group. Chemoradiotherapy Plus Induction or Consolidation Chemotherapy as Total Neoadjuvant Therapy for Patients With Locally Advanced Rectal Cancer: Long-term Results of the CAO/ARO/AIO-12 Randomized Clinical Trial. JAMA Oncol. 2022;8:e215445.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 34]  [Cited by in F6Publishing: 105]  [Article Influence: 35.0]  [Reference Citation Analysis (0)]
24.  Garcia-Aguilar J, Patil S, Gollub MJ, Kim JK, Yuval JB, Thompson HM, Verheij FS, Omer DM, Lee M, Dunne RF, Marcet J, Cataldo P, Polite B, Herzig DO, Liska D, Oommen S, Friel CM, Ternent C, Coveler AL, Hunt S, Gregory A, Varma MG, Bello BL, Carmichael JC, Krauss J, Gleisner A, Paty PB, Weiser MR, Nash GM, Pappou E, Guillem JG, Temple L, Wei IH, Widmar M, Lin S, Segal NH, Cercek A, Yaeger R, Smith JJ, Goodman KA, Wu AJ, Saltz LB. Organ Preservation in Patients With Rectal Adenocarcinoma Treated With Total Neoadjuvant Therapy. J Clin Oncol. 2022;40:2546-2556.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 261]  [Cited by in F6Publishing: 240]  [Article Influence: 120.0]  [Reference Citation Analysis (0)]
25.  Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, Arnold D; ESMO Guidelines Committee. Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv22-iv40.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1024]  [Cited by in F6Publishing: 932]  [Article Influence: 133.1]  [Reference Citation Analysis (0)]
26.  Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, Grem JL, Grothey A, Hochster HS, Hoffe S, Hunt S, Kamel A, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Mulcahy MF, Murphy JD, Nurkin S, Saltz L, Sharma S, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Wuthrick E, Gregory KM, Gurski L, Freedman-Cass DA. Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2018;16:874-901.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 447]  [Cited by in F6Publishing: 593]  [Article Influence: 118.6]  [Reference Citation Analysis (0)]
27.  Wo JY, Anker CJ, Ashman JB, Bhadkamkar NA, Bradfield L, Chang DT, Dorth J, Garcia-Aguilar J, Goff D, Jacqmin D, Kelly P, Newman NB, Olsen J, Raldow AC, Ruiz-Garcia E, Stitzenberg KB, Thomas CR Jr, Wu QJ, Das P. Radiation Therapy for Rectal Cancer: Executive Summary of an ASTRO Clinical Practice Guideline. Pract Radiat Oncol. 2021;11:13-25.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 54]  [Article Influence: 18.0]  [Reference Citation Analysis (0)]
28.  Capdevila J, Gómez MA, Guillot M, Páez D, Pericay C, Safont MJ, Tarazona N, Vera R, Vidal J, Sastre J. SEOM-GEMCAD-TTD clinical guidelines for localized rectal cancer (2021). Clin Transl Oncol. 2022;24:646-657.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 2]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
29.  Hui C, Vitzthum LK, Chang DT, Pollom EL. Neoadjuvant Therapy in the Post-German Rectal Trial Era: Making Sense in the Absence of Consensus. Pract Radiat Oncol. 2023;13:e54-e60.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
30.  Roeder F, Gerum S, Hecht S, Huemer F, Jäger T, Kaufmann R, Klieser E, Koch OO, Neureiter D, Emmanuel K, Sedlmayer F, Greil R, Weiss L. How We Treat Localized Rectal Cancer-An Institutional Paradigm for Total Neoadjuvant Therapy. Cancers (Basel). 2022;14.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
31.  Rodriguez-Ruiz ME, Rodriguez I, Leaman O, López-Campos F, Montero A, Conde AJ, Aristu JJ, Lara P, Calvo FM, Melero I. Immune mechanisms mediating abscopal effects in radioimmunotherapy. Pharmacol Ther. 2019;196:195-203.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 30]  [Cited by in F6Publishing: 30]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
32.  Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol. 2020;25:801-809.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 70]  [Cited by in F6Publishing: 99]  [Article Influence: 24.8]  [Reference Citation Analysis (0)]
33.  Lee Y, Auh SL, Wang Y, Burnette B, Meng Y, Beckett M, Sharma R, Chin R, Tu T, Weichselbaum RR, Fu YX. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009;114:589-595.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 917]  [Cited by in F6Publishing: 992]  [Article Influence: 66.1]  [Reference Citation Analysis (0)]
34.  Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 852]  [Cited by in F6Publishing: 1104]  [Article Influence: 157.7]  [Reference Citation Analysis (0)]
35.  Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124:687-695.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1219]  [Cited by in F6Publishing: 1473]  [Article Influence: 147.3]  [Reference Citation Analysis (0)]
36.  Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ, Stratford IJ, Poon E, Morrow M, Stewart R, Jones H, Wilkinson RW, Honeychurch J, Illidge TM. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74:5458-5468.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 914]  [Cited by in F6Publishing: 886]  [Article Influence: 88.6]  [Reference Citation Analysis (0)]
37.  Akama-Garren EH, Morris ZS, Sikora AG, Weichselbaum R, Schoenfeld JD. Prospective Clinical Investigation of the Efficacy of Combination Radiation Therapy With Immune Checkpoint Inhibition. Int J Radiat Oncol Biol Phys. 2021;111:1165-1175.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 7]  [Article Influence: 2.3]  [Reference Citation Analysis (0)]
38.  Goldstein JB, Wu W, Borras E, Masand G, Cuddy A, Mork ME, Bannon SA, Lynch PM, Rodriguez-Bigas M, Taggart MW, Wu J, Scheet P, Kopetz S, You YN, Vilar E. Can Microsatellite Status of Colorectal Cancer Be Reliably Assessed after Neoadjuvant Therapy? Clin Cancer Res. 2017;23:5246-5254.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 25]  [Article Influence: 3.6]  [Reference Citation Analysis (0)]
39.  Bao F, Panarelli NC, Rennert H, Sherr DL, Yantiss RK. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am J Surg Pathol. 2010;34:1798-1804.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 88]  [Cited by in F6Publishing: 96]  [Article Influence: 6.9]  [Reference Citation Analysis (0)]
40.  Seo I, Lee HW, Byun SJ, Park JY, Min H, Lee SH, Lee JS, Kim S, Bae SU. Neoadjuvant chemoradiation alters biomarkers of anticancer immunotherapy responses in locally advanced rectal cancer. J Immunother Cancer. 2021;9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 27]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
41.  Shamseddine A, Zeidan YH, El Husseini Z, Kreidieh M, Al Darazi M, Turfa R, Kattan J, Khalifeh I, Mukherji D, Temraz S, Alqasem K, Amarin R, Al Awabdeh T, Deeba S, Jamali F, Mohamad I, Elkhaldi M, Daoud F, Al Masri M, Dabous A, Hushki A, Jaber O, Charafeddine M, Geara F. Efficacy and safety-in analysis of short-course radiation followed by mFOLFOX-6 plus avelumab for locally advanced rectal adenocarcinoma. Radiat Oncol. 2020;15:233.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 27]  [Article Influence: 6.8]  [Reference Citation Analysis (0)]
42.  Lin Z, Cai M, Zhang P, Li G, Liu T, Li X, Cai K, Nie X, Wang J, Liu J, Liu H, Zhang W, Gao J, Wu C, Wang L, Fan J, Zhang L, Wang Z, Hou Z, Ma C, Yang K, Wu G, Tao K, Zhang T. Phase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J Immunother Cancer. 2021;9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 44]  [Article Influence: 14.7]  [Reference Citation Analysis (0)]
43.  Wang Y, Xia F, Shen L, Wan J, Zhang H, Wu R, Wang J, Wang Y, Xu Y, Cai S, Zhang Z. Short-Course Radiotherapy Based Total Neoadjuvant Therapy Combined with Toripalimab for Locally Advanced Rectal Cancer: Preliminary Findings from a Randomized, Prospective, Multicenter, Double-Arm, Phase II Trial (TORCH). Int J Radiat Oncol Biol Phys. 2022;114.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
44.  Mi M, Ye C, Yuan Y. Neoadjuvant PD-1 blockade: a promising nonoperative strategy for mismatch repair-deficient, locally advanced rectal cancer. Signal Transduct Target Ther. 2022;7:361.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
45.  Hanna CR, O'Cathail SM, Graham JS, Saunders M, Samuel L, Harrison M, Devlin L, Edwards J, Gaya DR, Kelly CA, Lewsley LA, Maka N, Morrison P, Dinnett L, Dillon S, Gourlay J, Platt JJ, Thomson F, Adams RA, Roxburgh CSD. Durvalumab (MEDI 4736) in combination with extended neoadjuvant regimens in rectal cancer: a study protocol of a randomised phase II trial (PRIME-RT). Radiat Oncol. 2021;16:163.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 8]  [Article Influence: 2.7]  [Reference Citation Analysis (0)]
46.  Ciombor KK  Testing nivolumab and ipilimumab with short-course radiation in locally advanced rectal cancer. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. [cited 13 November 2022]. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04751370 ClinicalTrials.gov Identifier: NCT04751370.  [PubMed]  [DOI]  [Cited in This Article: ]
47.  Qiu M  Sintilimab plus hypofractionated radiotherapy for MSI-H/dMMR rectal cancer. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. [cited 13 November 2022]. Available from: https://clinicaltrials.gov/ct2/show/NCT04636008 ClinicalTrials.gov Identifier: NCT04636008.  [PubMed]  [DOI]  [Cited in This Article: ]
48.  Roels S, Duthoy W, Haustermans K, Penninckx F, Vandecaveye V, Boterberg T, De Neve W. Definition and delineation of the clinical target volume for rectal cancer. Int J Radiat Oncol Biol Phys. 2006;65:1129-1142.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 168]  [Cited by in F6Publishing: 174]  [Article Influence: 9.7]  [Reference Citation Analysis (0)]
49.  Myerson RJ, Garofalo MC, El Naqa I, Abrams RA, Apte A, Bosch WR, Das P, Gunderson LL, Hong TS, Kim JJ, Willett CG, Kachnic LA. Elective clinical target volumes for conformal therapy in anorectal cancer: a radiation therapy oncology group consensus panel contouring atlas. Int J Radiat Oncol Biol Phys. 2009;74:824-830.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 376]  [Cited by in F6Publishing: 326]  [Article Influence: 21.7]  [Reference Citation Analysis (0)]
50.  Erlandsson J, Holm T, Pettersson D, Berglund Å, Cedermark B, Radu C, Johansson H, Machado M, Hjern F, Hallböök O, Syk I, Glimelius B, Martling A. Optimal fractionation of preoperative radiotherapy and timing to surgery for rectal cancer (Stockholm III): a multicentre, randomised, non-blinded, phase 3, non-inferiority trial. Lancet Oncol. 2017;18:336-346.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 318]  [Cited by in F6Publishing: 362]  [Article Influence: 51.7]  [Reference Citation Analysis (0)]
51.  Liu SX, Zhou ZR, Chen LX, Yang YJ, Hu ZD, Zhang TS. Short-course Versus Long-course Preoperative Radiotherapy plus Delayed Surgery in the Treatment of Rectal Cancer: a Meta-analysis. Asian Pac J Cancer Prev. 2015;16:5755-5762.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 16]  [Cited by in F6Publishing: 16]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
52.  Mowery YM, Salama JK, Zafar SY, Moore HG, Willett CG, Czito BG, Hopkins MB, Palta M. Neoadjuvant long-course chemoradiation remains strongly favored over short-course radiotherapy by radiation oncologists in the United States. Cancer. 2017;123:1434-1441.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 24]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
53.  Sebag-Montefiore D, Stephens RJ, Steele R, Monson J, Grieve R, Khanna S, Quirke P, Couture J, de Metz C, Myint AS, Bessell E, Griffiths G, Thompson LC, Parmar M. Preoperative radiotherapy versus selective postoperative chemoradiotherapy in patients with rectal cancer (MRC CR07 and NCIC-CTG C016): a multicentre, randomised trial. Lancet. 2009;373:811-820.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1089]  [Cited by in F6Publishing: 1037]  [Article Influence: 69.1]  [Reference Citation Analysis (2)]
54.  Schrag D, Weiser M, Saltz L, Mamon H, Gollub M, Basch E, Venook A, Shi Q. Challenges and solutions in the design and execution of the PROSPECT Phase II/III neoadjuvant rectal cancer trial (NCCTG N1048/Alliance). Clin Trials. 2019;16:165-175.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 51]  [Cited by in F6Publishing: 45]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
55.  Habr-Gama A, Perez RO, Nadalin W, Sabbaga J, Ribeiro U Jr, Silva e Sousa AH Jr, Campos FG, Kiss DR, Gama-Rodrigues J. Operative versus nonoperative treatment for stage 0 distal rectal cancer following chemoradiation therapy: long-term results. Ann Surg. 2004;240:711-7; discussion 717.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1120]  [Cited by in F6Publishing: 1208]  [Article Influence: 60.4]  [Reference Citation Analysis (0)]
56.  Wu TC, Sanford NN, Anand S, Chu FI, Wo JY, Raldow AC. Current Practice Patterns in Locally Advanced Rectal Cancer at Academic Institutions: A National Survey Among Radiation Oncologists, Medical Oncologists, and Colorectal Surgeons. Clin Colorectal Cancer. 2022;21:309-314.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
57.  Benson AB, Venook AP, Al-Hawary MM, Azad N, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Garrido-Laguna I, Grem JL, Gunn A, Hecht JR, Hoffe S, Hubbard J, Hunt S, Jeck W, Johung KL, Kirilcuk N, Krishnamurthi S, Maratt JK, Messersmith WA, Meyerhardt J, Miller ED, Mulcahy MF, Nurkin S, Overman MJ, Parikh A, Patel H, Pedersen K, Saltz L, Schneider C, Shibata D, Skibber JM, Sofocleous CT, Stotsky-Himelfarb E, Tavakkoli A, Willett CG, Gregory K, Gurski L. Rectal Cancer, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20:1139-1167.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
58.  Yuval JB, Garcia-Aguilar J. Watch-and-wait Management for Rectal Cancer After Clinical Complete Response to Neoadjuvant Therapy. Adv Surg. 2021;55:89-107.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2]  [Cited by in F6Publishing: 1]  [Article Influence: 0.3]  [Reference Citation Analysis (0)]
59.  Bach SP, de Wilt JHW, Peters F, Spindler K-LG, Appelt AL, Teo M, Homer V, Abbott NL, Geh I, Korsgen S, Al-Najami I, Rombouts AJM, Christensen P, Gilbert A, Navarro-Nuñez L, Quirke P, West N, Baatrup G, Marijnen C, Sebag-Montefiore D; STAR-TREC Collaborative Group. STAR-TREC phase II: Can we save the rectum by watchful waiting or transanal surgery following (chemo)radiotherapy vs total mesorectal excision for early rectal cancer? J Clin Oncol. 2022;40 Suppl:3502.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
60.  Serra-Aracil X, Pericay C, Badia-Closa J, Golda T, Biondo S, Hernández P, Targarona E, Borda-Arrizabalaga N, Reina A, Delgado S, Vallribera F, Caro A, Gallego-Plazas J, Pascual M, Álvarez-Laso C, Guadalajara-Labajo HG, Mora-Lopez L. Short-term outcomes of chemoradiotherapy and local excision versus total mesorectal excision in T2-T3ab,N0,M0 rectal cancer: a multicentre randomised, controlled, phase III trial (the TAU-TEM study). Ann Oncol. 2023;34:78-90.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 13]  [Article Influence: 13.0]  [Reference Citation Analysis (0)]
61.  Iv AA, Koprowski MA, Nabavizadeh N, Tsikitis VL. The evolution of rectal cancer treatment: the journey to total neoadjuvant therapy and organ preservation. Ann Gastroenterol. 2022;35:226-233.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in F6Publishing: 1]  [Reference Citation Analysis (0)]
62.  Habr-Gama A, Perez RO, São Julião GP, Proscurshim I, Fernandez LM, Figueiredo MN, Gama-Rodrigues J, Buchpiguel CA. Consolidation chemotherapy during neoadjuvant chemoradiation (CRT) for distal rectal cancer leads to sustained decrease in tumor metabolism when compared to standard CRT regimen. Radiat Oncol. 2016;11:24.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 33]  [Cited by in F6Publishing: 38]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
63.  Sun Myint A, Smith FM, Gollins S, Wong H, Rao C, Whitmarsh K, Sripadam R, Rooney P, Hershman M, Pritchard DM. Dose Escalation Using Contact X-ray Brachytherapy After External Beam Radiotherapy as Nonsurgical Treatment Option for Rectal Cancer: Outcomes From a Single-Center Experience. Int J Radiat Oncol Biol Phys. 2018;100:565-573.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 50]  [Article Influence: 7.1]  [Reference Citation Analysis (0)]
64.  Appelt AL, Vogelius IR, Pløen J, Rafaelsen SR, Lindebjerg J, Havelund BM, Bentzen SM, Jakobsen A. Long-term results of a randomized trial in locally advanced rectal cancer: no benefit from adding a brachytherapy boost. Int J Radiat Oncol Biol Phys. 2014;90:110-118.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 38]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
65.  Yu M, Wang DC, Li S, Huang LY, Wei J. Does a long interval between neoadjuvant chemoradiotherapy and surgery benefit the clinical outcomes of locally advanced rectal cancer? Int J Colorectal Dis. 2022;37:855-868.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
66.  Delishaj D, Fumagalli IC, Ursino S, Cristaudo A, Colangelo F, Stefanelli A, Alghisi A, De Nobili G, D'Amico R, Cocchi A, Ardizzoia A, Soatti CP. Neoadjuvant radiotherapy dose escalation for locally advanced rectal cancers in the new era of radiotherapy: A review of literature. World J Clin Cases. 2021;9:9077-9089.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in CrossRef: 3]  [Cited by in F6Publishing: 3]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
67.  Kong JC, Soucisse M, Michael M, Tie J, Ngan SY, Leong T, McCormick J, Warrier SK, Heriot AG. Total Neoadjuvant Therapy in Locally Advanced Rectal Cancer: A Systematic Review and Metaanalysis of Oncological and Operative Outcomes. Ann Surg Oncol. 2021;28:7476-7486.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 43]  [Article Influence: 14.3]  [Reference Citation Analysis (0)]
68.  Tang Y, Ma H, Zhou H, Liu Z, Zhang H, Zhang W, Cai Y, Li Y, Wei LC, Liu S, Wang W, Fang H, Song YW, Chen B, Lu NN, Jing H, Qi SN, Liu Y, Wang S, Wang X, Jin J. Preliminary Results of a Prospective Phase II Study of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. Int J Radiat Oncol Biol Phys. 2022;114 Suppl:e611-e612.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
69.  Liao CK, Kuo YT, Lin YC, Chern YJ, Hsu YJ, Yu YL, Chiang JM, Hsieh PS, Yeh CY, You JF. Neoadjuvant Short-Course Radiotherapy Followed by Consolidation Chemotherapy before Surgery for Treating Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. Curr Oncol. 2022;29:3708-3727.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Reference Citation Analysis (0)]
70.  van der Valk MJM, Hilling DE, Bastiaannet E, Meershoek-Klein Kranenbarg E, Beets GL, Figueiredo NL, Habr-Gama A, Perez RO, Renehan AG, van de Velde CJH; IWWD Consortium. Long-term outcomes of clinical complete responders after neoadjuvant treatment for rectal cancer in the International Watch & Wait Database (IWWD): an international multicentre registry study. Lancet. 2018;391:2537-2545.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 497]  [Cited by in F6Publishing: 569]  [Article Influence: 94.8]  [Reference Citation Analysis (0)]
71.  Chin RI, Roy A, Pedersen KS, Huang Y, Hunt SR, Glasgow SC, Tan BR, Wise PE, Silviera ML, Smith RK, Suresh R, Badiyan SN, Shetty AS, Henke LE, Mutch MG, Kim H. Clinical Complete Response in Patients With Rectal Adenocarcinoma Treated With Short-Course Radiation Therapy and Nonoperative Management. Int J Radiat Oncol Biol Phys. 2022;112:715-725.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 25]  [Article Influence: 8.3]  [Reference Citation Analysis (0)]
72.  Cabezón-Gutiérrez L, Custodio-Cabello S, Palka-Kotlowska M, Díaz-Pérez D, Mateos-Dominguez M, Galindo-Jara P. Neoadjuvant immunotherapy for dMMR/MSI-H locally advanced rectal cancer: The future new standard approach? Eur J Surg Oncol. 2022;.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 5]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
73.  Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, Adamow M, Kuk D, Panageas KS, Carrera C, Wong P, Quagliarello F, Wubbenhorst B, D'Andrea K, Pauken KE, Herati RS, Staupe RP, Schenkel JM, McGettigan S, Kothari S, George SM, Vonderheide RH, Amaravadi RK, Karakousis GC, Schuchter LM, Xu X, Nathanson KL, Wolchok JD, Gangadhar TC, Wherry EJ. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 2017;545:60-65.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 924]  [Cited by in F6Publishing: 1087]  [Article Influence: 155.3]  [Reference Citation Analysis (0)]
74.  Appelt AL, Pløen J, Vogelius IR, Bentzen SM, Jakobsen A. Radiation dose-response model for locally advanced rectal cancer after preoperative chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2013;85:74-80.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 169]  [Cited by in F6Publishing: 190]  [Article Influence: 15.8]  [Reference Citation Analysis (0)]
75.  Hearn N, Atwell D, Cahill K, Elks J, Vignarajah D, Lagopoulos J, Min M. Neoadjuvant Radiotherapy Dose Escalation in Locally Advanced Rectal Cancer: a Systematic Review and Meta-analysis of Modern Treatment Approaches and Outcomes. Clin Oncol (R Coll Radiol). 2021;33:e1-e14.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
76.  Rodel C  Short-course radiotherapy vs chemoradiotherapy, followed by consolidation chemotherapy, and selective organ preservation for mri-defined intermediate and high-risk rectal cancer patients. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. [cited 13 November 2022]. Available from: https://clinicaltrials.gov/ct2/show/NCT04246684 ClinicalTrials.gov Identifier: NCT04246684.  [PubMed]  [DOI]  [Cited in This Article: ]
77.  Erlandsson J, Lörinc E, Ahlberg M, Pettersson D, Holm T, Glimelius B, Martling A. Tumour regression after radiotherapy for rectal cancer - Results from the randomised Stockholm III trial. Radiother Oncol. 2019;135:178-186.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 57]  [Cited by in F6Publishing: 59]  [Article Influence: 11.8]  [Reference Citation Analysis (0)]
78.  Kim H, Pedersen K, Olsen JR, Mutch MG, Chin RI, Glasgow SC, Wise PE, Silviera ML, Tan BR, Wang-Gillam A, Lim KH, Suresh R, Amin M, Huang Y, Henke LE, Park H, Ciorba MA, Badiyan S, Parikh PJ, Roach MC, Hunt SR. Nonoperative Rectal Cancer Management With Short-Course Radiation Followed by Chemotherapy: A Nonrandomized Control Trial. Clin Colorectal Cancer. 2021;20:e185-e193.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 18]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]
79.  Grapin M, Richard C, Limagne E, Boidot R, Morgand V, Bertaut A, Derangere V, Laurent PA, Thibaudin M, Fumet JD, Crehange G, Ghiringhelli F, Mirjolet C. Optimized fractionated radiotherapy with anti-PD-L1 and anti-TIGIT: a promising new combination. J Immunother Cancer. 2019;7:160.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 125]  [Article Influence: 25.0]  [Reference Citation Analysis (0)]
80.  Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol Cancer Ther. 2017;16:2598-2608.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1259]  [Cited by in F6Publishing: 1524]  [Article Influence: 217.7]  [Reference Citation Analysis (0)]
81.  Ji D, Yi H, Zhang D, Zhan T, Li Z, Li M, Jia J, Qiao M, Xia J, Zhai Z, Song C, Gu J. Somatic Mutations and Immune Alternation in Rectal Cancer Following Neoadjuvant Chemoradiotherapy. Cancer Immunol Res. 2018;6:1401-1416.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 26]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
82.  Germano G, Lamba S, Rospo G, Barault L, Magrì A, Maione F, Russo M, Crisafulli G, Bartolini A, Lerda G, Siravegna G, Mussolin B, Frapolli R, Montone M, Morano F, de Braud F, Amirouchene-Angelozzi N, Marsoni S, D'Incalci M, Orlandi A, Giraudo E, Sartore-Bianchi A, Siena S, Pietrantonio F, Di Nicolantonio F, Bardelli A. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature. 2017;552:116-120.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 331]  [Cited by in F6Publishing: 406]  [Article Influence: 58.0]  [Reference Citation Analysis (0)]
83.  Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379-5388.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1020]  [Cited by in F6Publishing: 1203]  [Article Influence: 80.2]  [Reference Citation Analysis (0)]
84.  Zhou Z, Zhao J, Hu K, Hou X, Sun X, Pan X, Wang X, Li N, Yang Z, Zhang F, Zhou Q, Zhan L. Single High-Dose Radiation Enhances Dendritic Cell Homing and T Cell Priming by Promoting Reactive Oxygen Species-Induced Cytoskeletal Reorganization. Int J Radiat Oncol Biol Phys. 2021;109:95-108.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
85.  Venkatesulu BP, Mallick S, Lin SH, Krishnan S. A systematic review of the influence of radiation-induced lymphopenia on survival outcomes in solid tumors. Crit Rev Oncol Hematol. 2018;123:42-51.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 134]  [Cited by in F6Publishing: 195]  [Article Influence: 32.5]  [Reference Citation Analysis (0)]
86.  Yang G, Chang JS, Choi JE, Baek ES, Kim SS, Byun HK, Cho Y, Koom WS, Yang SY, Min BS, Shin SJ. Association of neutrophil-to-lymphocyte ratio, radiotherapy fractionation/technique, and risk of development of distant metastasis among patients with locally advanced rectal cancer. Radiat Oncol. 2022;17:100.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
87.  Wang K, Li M, Yan J. Construction and Evaluation of Nomogram for Hematological Indicators to Predict Pathological Response after Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. J Gastrointest Cancer. 2022;.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Reference Citation Analysis (0)]
88.  Diehl A, Yarchoan M, Hopkins A, Jaffee E, Grossman SA. Relationships between lymphocyte counts and treatment-related toxicities and clinical responses in patients with solid tumors treated with PD-1 checkpoint inhibitors. Oncotarget. 2017;8:114268-114280.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 114]  [Cited by in F6Publishing: 154]  [Article Influence: 22.0]  [Reference Citation Analysis (0)]
89.  Saito T, Toya R, Matsuyama T, Semba A, Oya N. Dosimetric Predictors of Treatment-related Lymphopenia induced by Palliative Radiotherapy: Predictive Ability of Dose-volume Parameters based on Body Surface Contour. Radiol Oncol. 2017;51:228-234.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 14]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
90.  Yuan C, Wang Q. Comparative analysis of the effect of different radiotherapy regimes on lymphocyte and its subpopulations in breast cancer patients. Clin Transl Oncol. 2018;20:1219-1225.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 16]  [Cited by in F6Publishing: 20]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
91.  Sung W, Grassberger C, McNamara AL, Basler L, Ehrbar S, Tanadini-Lang S, Hong TS, Paganetti H. A tumor-immune interaction model for hepatocellular carcinoma based on measured lymphocyte counts in patients undergoing radiotherapy. Radiother Oncol. 2020;151:73-81.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 13]  [Article Influence: 3.3]  [Reference Citation Analysis (0)]
92.  Chen D, Patel RR, Verma V, Ramapriyan R, Barsoumian HB, Cortez MA, Welsh JW. Interaction between lymphopenia, radiotherapy technique, dosimetry, and survival outcomes in lung cancer patients receiving combined immunotherapy and radiotherapy. Radiother Oncol. 2020;150:114-120.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 38]  [Cited by in F6Publishing: 55]  [Article Influence: 13.8]  [Reference Citation Analysis (0)]
93.  Buchwald ZS, Nasti TH, Lee J, Eberhardt CS, Wieland A, Im SJ, Lawson D, Curran W, Ahmed R, Khan MK. Tumor-draining lymph node is important for a robust abscopal effect stimulated by radiotherapy. J Immunother Cancer. 2020;8.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 31]  [Cited by in F6Publishing: 71]  [Article Influence: 17.8]  [Reference Citation Analysis (0)]
94.  Marciscano AE, Ghasemzadeh A, Nirschl TR, Theodros D, Kochel CM, Francica BJ, Muroyama Y, Anders RA, Sharabi AB, Velarde E, Mao W, Chaudhary KR, Chaimowitz MG, Wong J, Selby MJ, Thudium KB, Korman AJ, Ulmert D, Thorek DLJ, DeWeese TL, Drake CG. Elective Nodal Irradiation Attenuates the Combinatorial Efficacy of Stereotactic Radiation Therapy and Immunotherapy. Clin Cancer Res. 2018;24:5058-5071.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 134]  [Cited by in F6Publishing: 188]  [Article Influence: 31.3]  [Reference Citation Analysis (0)]
95.  Yovino S, Kleinberg L, Grossman SA, Narayanan M, Ford E. The etiology of treatment-related lymphopenia in patients with malignant gliomas: modeling radiation dose to circulating lymphocytes explains clinical observations and suggests methods of modifying the impact of radiation on immune cells. Cancer Invest. 2013;31:140-144.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 280]  [Cited by in F6Publishing: 264]  [Article Influence: 24.0]  [Reference Citation Analysis (0)]
96.  Tang C, Liao Z, Gomez D, Levy L, Zhuang Y, Gebremichael RA, Hong DS, Komaki R, Welsh JW. Lymphopenia association with gross tumor volume and lung V5 and its effects on non-small cell lung cancer patient outcomes. Int J Radiat Oncol Biol Phys. 2014;89:1084-1091.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 208]  [Cited by in F6Publishing: 255]  [Article Influence: 25.5]  [Reference Citation Analysis (0)]
97.  Fiore M, Greco C, Coppola A, Caricato M, Caputo D, Trecca P, Floreno B, Rinaldi CG, Ippolito E, Capolupo GT, Grippo R, Beomonte Zobel B, D'Angelillo RM, Trodella L, Ramella S. Long-Term Results of a Prospective Phase 2 Study on Volume De-Escalation in Neoadjuvant Chemoradiotherapy of Rectal Cancer. Pract Radiat Oncol. 2021;11:e186-e194.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
98.  Lambin P, Lieverse RIY, Eckert F, Marcus D, Oberije C, van der Wiel AMA, Guha C, Dubois LJ, Deasy JO. Lymphocyte-Sparing Radiotherapy: The Rationale for Protecting Lymphocyte-rich Organs When Combining Radiotherapy With Immunotherapy. Semin Radiat Oncol. 2020;30:187-193.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 57]  [Cited by in F6Publishing: 51]  [Article Influence: 12.8]  [Reference Citation Analysis (0)]
99.  Hayman JA, Callahan JW, Herschtal A, Everitt S, Binns DS, Hicks RJ, Mac Manus M. Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys. 2011;79:847-852.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 72]  [Cited by in F6Publishing: 61]  [Article Influence: 4.7]  [Reference Citation Analysis (0)]
100.  Hall EJ, Giaccia AJ.   Radiobiology for the Radiologist. 8th ed. Philadelphia: Wolters Kluwer, 2018: 362.  [PubMed]  [DOI]  [Cited in This Article: ]
101.  Allen SD, Padhani AR, Dzik-Jurasz AS, Glynne-Jones R. Rectal carcinoma: MRI with histologic correlation before and after chemoradiation therapy. AJR Am J Roentgenol. 2007;188:442-451.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 108]  [Cited by in F6Publishing: 101]  [Article Influence: 5.9]  [Reference Citation Analysis (0)]
102.  Campian JL, Ye X, Sarai G, Herman J, Grossman SA. Severe Treatment-Related Lymphopenia in Patients with Newly Diagnosed Rectal Cancer. Cancer Invest. 2018;36:356-361.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
103.  Xiang X, Li N, Ding Z, Dai Z, Jin J. Peripheral Lymphocyte Counts and Lymphocyte-Related Inflammation Indicators During Radiotherapy for Pelvic Malignancies: Temporal Characterization and Dosimetric Predictors. Technol Cancer Res Treat. 2022;21:15330338221116494.  [PubMed]  [DOI]  [Cited in This Article: ]  [Reference Citation Analysis (0)]
104.  Bae BK, Kang MK, Kim JC, Kim MY, Choi GS, Kim JG, Kang BW, Kim HJ, Park SY. Simultaneous integrated boost intensity-modulated radiotherapy versus 3-dimensional conformal radiotherapy in preoperative concurrent chemoradiotherapy for locally advanced rectal cancer. Radiat Oncol J. 2017;35:208-216.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 9]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
105.  Wee CW, Kang HC, Wu HG, Chie EK, Choi N, Park JM, Kim JI, Huang CM, Wang JY, Ng SY, Goodman KA. Intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy in rectal cancer treated with neoadjuvant concurrent chemoradiation: a meta-analysis and pooled-analysis of acute toxicity. Jpn J Clin Oncol. 2018;48:458-466.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 25]  [Article Influence: 4.2]  [Reference Citation Analysis (0)]
106.  Herman Tde L, Schnell E, Young J, Hildebrand K, Algan O, Syzek E, Herman T, Ahmad S. Dosimetric comparison between IMRT delivery modes: Step-and-shoot, sliding window, and volumetric modulated arc therapy - for whole pelvis radiation therapy of intermediate-to-high risk prostate adenocarcinoma. J Med Phys. 2013;38:165-172.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 14]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
107.  Kuncman Ł, Stawiski K, Masłowski M, Kucharz J, Fijuth J. Dose-volume parameters of MRI-based active bone marrow predict hematologic toxicity of chemoradiotherapy for rectal cancer. Strahlenther Onkol. 2020;196:998-1005.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 8]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
108.  Huang W, Dang J, Li Y, Cui HX, Lu WL, Jiang QF. Effect of Pelvic Bone Marrow Sparing Intensity Modulated Radiation Therapy on Acute Hematologic Toxicity in Rectal Cancer Patients Undergoing Chemo-Radiotherapy. Front Oncol. 2021;11:646211.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 3]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
109.  Nilsson PJ, van Etten B, Hospers GA, Påhlman L, van de Velde CJ, Beets-Tan RG, Blomqvist L, Beukema JC, Kapiteijn E, Marijnen CA, Nagtegaal ID, Wiggers T, Glimelius B. Short-course radiotherapy followed by neo-adjuvant chemotherapy in locally advanced rectal cancer--the RAPIDO trial. BMC Cancer. 2013;13:279.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 209]  [Cited by in F6Publishing: 218]  [Article Influence: 19.8]  [Reference Citation Analysis (0)]
110.  Smith JJ, Chow OS, Gollub MJ, Nash GM, Temple LK, Weiser MR, Guillem JG, Paty PB, Avila K, Garcia-Aguilar J; Rectal Cancer Consortium. Organ Preservation in Rectal Adenocarcinoma: a phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management. BMC Cancer. 2015;15:767.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 192]  [Cited by in F6Publishing: 232]  [Article Influence: 25.8]  [Reference Citation Analysis (0)]
111.  Shamseddine A, Zeidan YH, Kreidieh M, Khalifeh I, Turfa R, Kattan J, Mukherji D, Temraz S, Alqasem K, Amarin R, Al Awabdeh T, Deeba S, Jamali F, Mohamad I, Elkhaldi M, Daoud F, Al Masri M, Dabous A, Hushki A, Jaber O, Khoury C, El Husseini Z, Charafeddine M, Al Darazi M, Geara F. Short-course radiation followed by mFOLFOX-6 plus avelumab for locally-advanced rectal adenocarcinoma. BMC Cancer. 2020;20:831.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 7]  [Article Influence: 1.8]  [Reference Citation Analysis (0)]
112.  Shamseddine A, Zeidan Y, Bouferraa Y, Turfa R, Kattan J, Mukherji D, Temraz S, Alqasem K, Amarin R, Al Awabdeh T, Deeba S, Doughan S, Mohamad I, Elkhaldi M, Daoud F, Al Masri M, Dabous A, Hushki A, Charafeddine M, Al Darazi M, Geara F. Efficacy and safety of neoadjuvant short-course radiation followed by mFOLFOX-6 plus avelumab for locally-advanced rectal adenocarcinoma: Averectal study. Ann Oncol. 2021;32 Suppl:S215.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 4]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
113.  Wang Y, Shen L, Wan J, Zhang H, Wu R, Wang J, Wang Y, Xu Y, Cai S, Zhang Z, Xia F. Short-course radiotherapy combined with CAPOX and Toripalimab for the total neoadjuvant therapy of locally advanced rectal cancer: a randomized, prospective, multicentre, double-arm, phase II trial (TORCH). BMC Cancer. 2022;22:274.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1]  [Cited by in F6Publishing: 12]  [Article Influence: 6.0]  [Reference Citation Analysis (0)]