Editorial Open Access
Copyright ©2008 The WJG Press and Baishideng. All rights reserved.
World J Gastroenterol. Oct 7, 2008; 14(37): 5617-5619
Published online Oct 7, 2008. doi: 10.3748/wjg.14.5617
How we have learned about the complexity of physiology, pathobiology and pharmacology of bile acids and biliary secretion
Jose JG Marin, Laboratory of Experimental Hepatology and Drug Targeting, CIBERehd, University of Salamanca, Salamanca 37007, Spain
Author contributions: Marin JJG is the sole contributor to this paper.
Correspondence to: Jose JG Marin, Professor, Department of Physiology and Pharmacology, Campus Miguel de Unamuno E.I.D. S-09, Salamanca 37007, Spain. jjgmarin@usal.es
Telephone: +34-923-294674 Fax: +34-923-294669
Received: July 24, 2008
Revised: September 16, 2008
Accepted: September 23, 2008
Published online: October 7, 2008

Abstract

During the last decades the concept of bile secretion as merely a way to add detergent components to the intestinal mixture to facilitate fat digestion/absorption and to eliminate side products of heme metabolism has evolved considerably. In the series of mini-reviews that the World Journal of Gastroenterology is to publish in its section of “Highlight Topics”, we will intend to give a brief but updated overview of our knowledge in this field. This introductory letter is intended to thank all scientists who have contributed to the development of this area of knowledge in gastroenterology.

Key Words: Bile flow; Cholestasis; Hepatocyte; Liver; Transport



INTRODUCTION

During the last decades the concept of bile secretion as merely a way to add detergent components to the intestinal mixture to facilitate fat digestion/absorption and to eliminate side products of heme metabolism has evolved considerably. In the series of mini-reviews that the World Journal of Gastroenterology is to publish in its section of “Highlight Topics”, we intend to give a brief but updated overview of our knowledge in this field. The first opening title by Esteller[1], in addition to review the mechanisms of bile formation, will serve as an introduction to the rest of mini-reviews. Therefore, I will skip this task here and devote this letter to thank all scientists who have contributed to the development of this area of knowledge in gastroenterology. First of all, I wish to apology because only a limited number of them will be cited here and also for the fact that, in most cases, I will cite them by the main investigator of the group. I assume that we all know, in some cases personally, what excellent scientists have participated in the contributions published by these teams. Nevertheless, I hope that every important contribution and research group will be cited in the appropriate mini-review of the series. Let me start this brief historical overview by reminding you the important initial steps in understanding bile acid physiology given by Schiff[2] and Wheeler[3], which permitted the establishment of the bases for further investigations by Boyer[4], Erlinger[5], Anwer[6] and others on the role of osmotic mechanisms accounting for bile acid-dependent and-independent fractions of bile flow. The elucidation of the physical-chemical characteristics of bile acids has been determinant in understanding the role of different bile acid species in bile formation, bile acid-induced injury of liver tissue and cholestasis or, in contrast, hepatoprotection, as well as the process of gallstone formation or prevention, etc. This has been possible thank to the investigations carried out by many groups, including those of Hofmann[7], Carey[8], Small[7,8], Paumgartner[9], Reichen[9], Danielsson[10], Sjovall[10], Reyes[11], Setchell[12], Poupon[13] and others. It has been with the help of molecular biology techniques that Meier[14,15], Stieger[14], Hagenbuch[15,16], Keppler[17], Thompson[18] and others have been able to identify transport proteins involved in the efficient uptake and secretion of bile acids by the liver. Similar studies by Dawson[16] and others have also contributed to our understanding of the role of intestinal transporters in the so-called enterohepatic circulation of bile acids. Advances in the research of substrate-transporter interactions by many important groups, including several mentioned above in addition to those of Sugiyama[19], Klaassen[20] and Petzinger[21], has lead to Kramer[22] and others, including our own laboratory[23,24] to undertake the development of promising new drugs based on the substrate selectivity of plasma membrane transporters and the possibility of either blocking their function or targeting bile acid derivatives toward healthy liver tissue or toward tumours located in the enterohepatic circuit. Over the last few years the novel concept of bile acids as signalling molecules in several cell types has emerged. Thus, the possibility that bile acids, as well as other oxysterols, may activate nuclear receptors and regulate the expression of enzymes and transporters was suggested from results obtained at the same time by three different groups[25-27], and developed by these groups, and others, such as those of Karpen[28], Kullak-Ublick[29], Chiang[30] and Houten[31]. These findings are helping us to understand how liver cells may respond to endocrine signals (e.g. during pregnancy) or to the accumulation of bile acids occurring in cholestasis, which is the subject of research currently carried out by several groups, including those of Trauner[32,33], Suchy[33,34], Ananthanarayanan[33,34], Lammert[35], Williamson[35], Accatino[33], Arrese[33,36] and others. Moreover, bile acids can also interact with plasma membrane elements and therefore participate in autocrine and paracrine functions, interacting with several signalling pathways as it is being brilliantly investigated by Haussinger, Kubitz, Keitel and the rest of this group[37], as well as by Dent[38], Fujino[39], Beuers[40], Dufour[41] and others. A complete view of biliary physiology also needs to consider the participation of cholangiocytes in bile formation and the knowledge of mechanisms of bile secretion of other important endogenous compounds, such as cholesterol, bilirubin, glutathione and xenobiotics, such as drugs and toxins. We owe many important contributions in these fields to LaRusso[42], Ballatori[43], Arias[44], Keppler[17], Sugiyama[19], Wolkoff[45], Oude Elferink[46], Meijer[46], Kuipers[46], Jansen[46], Groen[46], Groothuis[46], Ostrow[47], Fevery[48], Coleman[49], Berenson[50], Vore[51] and many others. As I said this editorial letter of gratitude is highly incomplete, but it would be even more so without mentioning the appreciation of many hepatologists to the supporting role of Dr. Falk and the Falk Foundation e.V. to the research in this field.

Footnotes

S- Editor Li DL E- Editor Lin YP

References
1.  Esteller A, Lopez MA. The effect of secretin and cholecystokinin-pancreozymin on the secretion of bile in the anaesthetized rabbit. Q J Exp Physiol Cogn Med Sci. 1977;62:353-359.  [PubMed]  [DOI]  [Cited in This Article: ]
2.  Schiff MI. Gallenbildung, abhangig von der Aufsangung der Gallenstoffe. Arch Ges Physiol Menschen Thiere. 1870;3:598-613.  [PubMed]  [DOI]  [Cited in This Article: ]
3.  Wheeler HO. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch Intern Med. 1972;130:533-541.  [PubMed]  [DOI]  [Cited in This Article: ]
4.  Boyer JL. New concepts of mechanisms of hepatocyte bile formation. Physiol Rev. 1980;60:303-326.  [PubMed]  [DOI]  [Cited in This Article: ]
5.  Erlinger S. Physiology of bile flow. Prog Liver Dis. 1972;4:63-82.  [PubMed]  [DOI]  [Cited in This Article: ]
6.  Anwer MS, Hegner D. Importance of solvent drag and diffusion in bile acid-dependent bile formation: ion substitution studies in isolated perfused rat liver. Hepatology. 1982;2:580-586.  [PubMed]  [DOI]  [Cited in This Article: ]
7.  Hofmann AF, Small DM. Detergent properties of bile salts: correlation with physiological function. Annu Rev Med. 1967;18:333-376.  [PubMed]  [DOI]  [Cited in This Article: ]
8.  Carey MC, Small DM. The characteristics of mixed micellar solutions with particular reference to bile. Am J Med. 1970;49:590-608.  [PubMed]  [DOI]  [Cited in This Article: ]
9.  Paumgartner G, Reichen J, von Bergmann K, Preisig R. Elaboration of hepatocytic bile. Bull N Y Acad Med. 1975;51:455-471.  [PubMed]  [DOI]  [Cited in This Article: ]
10.  Danielsson H, Sjovall J. Bile acid metabolism. Annu Rev Biochem. 1975;44:233-253.  [PubMed]  [DOI]  [Cited in This Article: ]
11.  Reyes H. Review: intrahepatic cholestasis. A puzzling disorder of pregnancy. J Gastroenterol Hepatol. 1997;12:211-216.  [PubMed]  [DOI]  [Cited in This Article: ]
12.  Setchell KD, Street JM. Inborn errors of bile acid synthesis. Semin Liver Dis. 1987;7:85-99.  [PubMed]  [DOI]  [Cited in This Article: ]
13.  Poupon RE, Balkau B, Eschwege E, Poupon R. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N Engl J Med. 1991;324:1548-1554.  [PubMed]  [DOI]  [Cited in This Article: ]
14.  Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol. 2002;64:635-661.  [PubMed]  [DOI]  [Cited in This Article: ]
15.  Hagenbuch B, Meier PJ. The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta. 2003;1609:1-18.  [PubMed]  [DOI]  [Cited in This Article: ]
16.  Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10. Pflugers Arch. 2004;447:566-570.  [PubMed]  [DOI]  [Cited in This Article: ]
17.  Keppler D, Konig J. Hepatic secretion of conjugated drugs and endogenous substances. Semin Liver Dis. 2000;20:265-272.  [PubMed]  [DOI]  [Cited in This Article: ]
18.  Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V. A gene encoding a liver-specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet. 1998;20:233-238.  [PubMed]  [DOI]  [Cited in This Article: ]
19.  Shitara Y, Sato H, Sugiyama Y. Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol. 2005;45:689-723.  [PubMed]  [DOI]  [Cited in This Article: ]
20.  Klaassen CD. Biliary excretion of xenobiotics. CRC Crit Rev Toxicol. 1975;4:1-30.  [PubMed]  [DOI]  [Cited in This Article: ]
21.  Petzinger E, Geyer J. Drug transporters in pharmacokinetics. Naunyn Schmiedebergs Arch Pharmacol. 2006;372:465-475.  [PubMed]  [DOI]  [Cited in This Article: ]
22.  Kramer W, Wess G. Bile acid transport systems as pharmaceutical targets. Eur J Clin Invest. 1996;26:715-732.  [PubMed]  [DOI]  [Cited in This Article: ]
23.  Dominguez MF, Macias RI, Izco-Basurko I, de La Fuente A, Pascual MJ, Criado JM, Monte MJ, Yajeya J, Marin JJ. Low in vivo toxicity of a novel cisplatin-ursodeoxycholic derivative (Bamet-UD2) with enhanced cytostatic activity versus liver tumors. J Pharmacol Exp Ther. 2001;297:1106-1112.  [PubMed]  [DOI]  [Cited in This Article: ]
24.  Briz O, Macias RI, Vallejo M, Silva A, Serrano MA, Marin JJ. Usefulness of liposomes loaded with cytostatic bile acid derivatives to circumvent chemotherapy resistance of enterohepatic tumors. Mol Pharmacol. 2003;63:742-750.  [PubMed]  [DOI]  [Cited in This Article: ]
25.  Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science. 1999;284:1362-1365.  [PubMed]  [DOI]  [Cited in This Article: ]
26.  Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD. Bile acids: natural ligands for an orphan nuclear receptor. Science. 1999;284:1365-1368.  [PubMed]  [DOI]  [Cited in This Article: ]
27.  Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3:543-553.  [PubMed]  [DOI]  [Cited in This Article: ]
28.  Karpen SJ. Nuclear receptor regulation of hepatic function. J Hepatol. 2002;36:832-850.  [PubMed]  [DOI]  [Cited in This Article: ]
29.  Eloranta JJ, Kullak-Ublick GA. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch Biochem Biophys. 2005;433:397-412.  [PubMed]  [DOI]  [Cited in This Article: ]
30.  Chiang JY. Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev. 2002;23:443-463.  [PubMed]  [DOI]  [Cited in This Article: ]
31.  Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 2006;25:1419-1425.  [PubMed]  [DOI]  [Cited in This Article: ]
32.  Zollner G, Marschall HU, Wagner M, Trauner M. Role of nuclear receptors in the adaptive response to bile acids and cholestasis: pathogenetic and therapeutic considerations. Mol Pharm. 2006;3:231-251.  [PubMed]  [DOI]  [Cited in This Article: ]
33.  Arrese M, Trauner M, Ananthanarayanan M, Pizarro M, Solis N, Accatino L, Soroka C, Boyer JL, Karpen SJ, Miquel JF. Down-regulation of the Na+/taurocholate cotransporting polypeptide during pregnancy in the rat. J Hepatol. 2003;38:148-55.  [PubMed]  [DOI]  [Cited in This Article: ]
34.  Suchy FJ, Ananthanarayanan M. Bile salt excretory pump: biology and pathobiology. J Pediatr Gastroenterol Nutr. 2006;43 Suppl 1:S10-S16.  [PubMed]  [DOI]  [Cited in This Article: ]
35.  Van Mil SW, Milona A, Dixon PH, Mullenbach R, Geenes VL, Chambers J, Shevchuk V, Moore GE, Lammert F, Glantz AG. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology. 2007;133:507-516.  [PubMed]  [DOI]  [Cited in This Article: ]
36.  Arrese M, Macias RI, Briz O, Perez MJ, Marin JJ. Molecular pathogenesis of intrahepatic cholestasis of pregnancy. Expert Rev Mol Med. 2008;10:e9.  [PubMed]  [DOI]  [Cited in This Article: ]
37.  Keitel V, Reinehr R, Gatsios P, Rupprecht C, Gorg B, Selbach O, Haussinger D, Kubitz R. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology. 2007;45:695-704.  [PubMed]  [DOI]  [Cited in This Article: ]
38.  Dent P, Fang Y, Gupta S, Studer E, Mitchell C, Spiegel S, Hylemon PB. Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin-sensitive mechanism in murine and human hepatocytes. Hepatology. 2005;42:1291-1299.  [PubMed]  [DOI]  [Cited in This Article: ]
39.  Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y. A G protein-coupled receptor responsive to bile acids. J Biol Chem. 2003;278:9435-9440.  [PubMed]  [DOI]  [Cited in This Article: ]
40.  Wimmer R, Hohenester S, Pusl T, Denk GU, Rust C, Beuers U. Tauroursodeoxycholic acid exerts anticholestatic effects by a cooperative cPKC{alpha}-/PKA-dependent mechanism in rat liver. Gut. 2008;57:1448-1454.  [PubMed]  [DOI]  [Cited in This Article: ]
41.  Wang L, Piguet AC, Schmidt K, Tordjmann T, Dufour JF. Activation of CREB by tauroursodeoxycholic acid protects cholangiocytes from apoptosis induced by mTOR inhibition. Hepatology. 2005;41:1241-1251.  [PubMed]  [DOI]  [Cited in This Article: ]
42.  Bogert PT, LaRusso NF. Cholangiocyte biology. Curr Opin Gastroenterol. 2007;23:299-305.  [PubMed]  [DOI]  [Cited in This Article: ]
43.  Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol. 2005;204:238-255.  [PubMed]  [DOI]  [Cited in This Article: ]
44.  Arias IM. Hepatic aspects of bilirubin metabolism. Annu Rev Med. 1966;17:257-274.  [PubMed]  [DOI]  [Cited in This Article: ]
45.  Wolkoff AW. Hepatocellular sinusoidal membrane organic anion transport and transporters. Semin Liver Dis. 1996;16:121-127.  [PubMed]  [DOI]  [Cited in This Article: ]
46.  Oude Elferink RP, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta. 1995;1241:215-268.  [PubMed]  [DOI]  [Cited in This Article: ]
47.  Ostrow JD. Photochemical and biochemical basis of the treatment of neonatal jaundice. Prog Liver Dis. 1972;4:447-462.  [PubMed]  [DOI]  [Cited in This Article: ]
48.  Fevery J, Blanckaert N, Heirwegh KP, De Groote J. Bilirubin conjugates: formation and detection. Prog Liver Dis. 1976;5:183-214.  [PubMed]  [DOI]  [Cited in This Article: ]
49.  Coleman R. Bile salts and biliary lipids. Biochem Soc Trans. 1987;15 Suppl:68S-80S.  [PubMed]  [DOI]  [Cited in This Article: ]
50.  Berenson MM, Marin JJ, Larsen R, Avner D. Effect of bile acids on hepatic protoporphyrin metabolism in perfused rat liver. Gastroenterology. 1987;93:1086-1093.  [PubMed]  [DOI]  [Cited in This Article: ]
51.  Vore M. Canalicular transport: discovery of ATP-dependent mechanisms. Toxicol Appl Pharmacol. 1993;118:2-7.  [PubMed]  [DOI]  [Cited in This Article: ]