BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fedoryshchak RO, Přechová M, Butler AM, Lee R, O'Reilly N, Flynn HR, Snijders AP, Eder N, Ultanir S, Mouilleron S, Treisman R. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. Elife 2020;9:e61509. [PMID: 32975518 DOI: 10.7554/eLife.61509] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
Number Citing Articles
1 Srivastava G, Bajaj R, Kumar GS, Gaudreau-Lapierre A, Nicolas H, Chamousset D, Kreitler D, Peti W, Trinkle-Mulcahy L, Page R. The ribosomal RNA processing 1B:protein phosphatase 1 holoenzyme reveals non-canonical PP1 interaction motifs. Cell Rep 2022;41:111726. [PMID: 36450254 DOI: 10.1016/j.celrep.2022.111726] [Reference Citation Analysis]
2 Semrau MS, Giachin G, Covaceuszach S, Cassetta A, Demitri N, Storici P, Lolli G. Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun 2022;13:6199. [PMID: 36261419 DOI: 10.1038/s41467-022-33693-z] [Reference Citation Analysis]
3 Kokot T, Köhn M. Emerging insights into serine/threonine-specific phosphoprotein phosphatase function and selectivity. Journal of Cell Science 2022;135. [DOI: 10.1242/jcs.259618] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Ma X, Su M, He Q, Zhang Z, Zhang F, Liu Z, Sun L, Weng J, Xu S. PHACTR1, a coronary artery disease risk gene, mediates endothelial dysfunction. Front Immunol 2022;13:958677. [DOI: 10.3389/fimmu.2022.958677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Carminati M, Manav MC, Bellini D, Passmore LA. A direct interaction between CPF and Pol II links RNA 3ʹ-end processing to transcription.. [DOI: 10.1101/2022.07.28.501803] [Reference Citation Analysis]
6 Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, Mccormick F, Esposito D, Rodriguez-viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2–MRAS–PP1C complex provides insights into RAF activation and Noonan syndrome.. [DOI: 10.1101/2022.05.10.491335] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Hodgson G, Andreeva A, Bertolotti A. Substrate recognition determinants of human eIF2α phosphatases. Open Biol 2021;11:210205. [PMID: 34847777 DOI: 10.1098/rsob.210205] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Hodgson G, Andreeva A, Bertolotti A. Substrate recognition determinants of human eIF2α phosphatases.. [DOI: 10.1101/2021.07.12.452048] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Yan Y, Harding HP, Ron D. Higher order phosphatase-substrate contacts terminate the Integrated Stress Response.. [DOI: 10.1101/2021.06.18.449003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Hoermann B, Köhn M. Evolutionary crossroads of cell signaling: PP1 and PP2A substrate sites in intrinsically disordered regions. Biochem Soc Trans 2021;49:1065-74. [PMID: 34100859 DOI: 10.1042/BST20200175] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Foley K, McKee C, Nairn AC, Xia H. Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021;41:3040-50. [PMID: 33827970 DOI: 10.1523/JNEUROSCI.2026-20.2021] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
12 Yan Y, Harding HP, Ron D. Higher-order phosphatase-substrate contacts terminate the integrated stress response. Nat Struct Mol Biol 2021;28:835-46. [PMID: 34625748 DOI: 10.1038/s41594-021-00666-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]