BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ausborn J, Shevtsova NA, Caggiano V, Danner SM, Rybak IA. Computational modeling of brainstem circuits controlling locomotor frequency and gait. Elife 2019;8:e43587. [PMID: 30663578 DOI: 10.7554/eLife.43587] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 6.7] [Reference Citation Analysis]
Number Citing Articles
1 Shevtsova NA, Li EZ, Singh S, Dougherty KJ, Rybak IA. Ipsilateral and Contralateral Interactions in Spinal Locomotor Circuits Mediated by V1 Neurons: Insights from Computational Modeling. Int J Mol Sci 2022;23:5541. [PMID: 35628347 DOI: 10.3390/ijms23105541] [Reference Citation Analysis]
2 Zhang H, Shevtsova NA, Deska-Gauthier D, Mackay C, Dougherty KJ, Danner SM, Zhang Y, Rybak IA. The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice. Elife 2022;11:e73424. [PMID: 35476640 DOI: 10.7554/eLife.73424] [Reference Citation Analysis]
3 Gonçalves AI, Zavatone-veth JA, Carey MR, Clark DA. Parallel locomotor control strategies in mice and flies. Current Opinion in Neurobiology 2022;73:102516. [DOI: 10.1016/j.conb.2022.01.001] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Song Z, Xu J. Self-/mutual-symmetric rhythms and their coexistence in a delayed half-center oscillator of the CPG neural system. Nonlinear Dyn. [DOI: 10.1007/s11071-022-07222-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Song Y, Hirashima M, Takei T. Neural Network Models for Spinal Implementation of Muscle Synergies. Front Syst Neurosci 2022;16:800628. [DOI: 10.3389/fnsys.2022.800628] [Reference Citation Analysis]
6 Zhang H, Liu Y, Zhou K, Wei W, Liu Y. Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Front Neurosci 2021;15:749465. [PMID: 34720867 DOI: 10.3389/fnins.2021.749465] [Reference Citation Analysis]
7 Roussel Y, Gaudreau SF, Kacer ER, Sengupta M, Bui TV. Modeling spinal locomotor circuits for movements in developing zebrafish. Elife 2021;10:e67453. [PMID: 34473059 DOI: 10.7554/eLife.67453] [Reference Citation Analysis]
8 Lemieux M, Thiry L, Laflamme OD, Bretzner F. Role of DSCAM in the Development of Neural Control of Movement and Locomotion. Int J Mol Sci 2021;22:8511. [PMID: 34445216 DOI: 10.3390/ijms22168511] [Reference Citation Analysis]
9 Ausborn J, Shevtsova NA, Danner SM. Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics. Int J Mol Sci 2021;22:6835. [PMID: 34202085 DOI: 10.3390/ijms22136835] [Reference Citation Analysis]
10 Grillner S, Kozlov A. The CPGs for Limbed Locomotion-Facts and Fiction. Int J Mol Sci 2021;22:5882. [PMID: 34070932 DOI: 10.3390/ijms22115882] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Di Russo A, Stanev D, Armand S, Ijspeert A. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study. PLoS Comput Biol 2021;17:e1008594. [PMID: 34010288 DOI: 10.1371/journal.pcbi.1008594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Agurto C, Heisig S, Abrami A, Ho BK, Caggiano V. Parkinson's disease medication state and severity assessment based on coordination during walking. PLoS One 2021;16:e0244842. [PMID: 33596202 DOI: 10.1371/journal.pone.0244842] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Shevtsova NA, Ha NT, Rybak IA, Dougherty KJ. Neural Interactions in Developing Rhythmogenic Spinal Networks: Insights From Computational Modeling. Front Neural Circuits 2020;14:614615. [PMID: 33424558 DOI: 10.3389/fncir.2020.614615] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
14 Latash EM, Lecomte CG, Danner SM, Frigon A, Rybak IA, Molkov YI. On the Organization of the Locomotor CPG: Insights From Split-Belt Locomotion and Mathematical Modeling. Front Neurosci 2020;14:598888. [PMID: 33177987 DOI: 10.3389/fnins.2020.598888] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Eisdorfer JT, Smit RD, Keefe KM, Lemay MA, Smith GM, Spence AJ. Epidural Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Front Mol Neurosci 2020;13:163. [PMID: 33013317 DOI: 10.3389/fnmol.2020.00163] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Aguilar Garcia IG, Dueñas-Jiménez JM, Castillo L, Osuna-Carrasco LP, De La Torre Valdovinos B, Castañeda-Arellano R, López-Ruiz JR, Toro-Castillo C, Treviño M, Mendizabal-Ruiz G, Duenas-Jimenez SH. Fictive Scratching Patterns in Brain Cortex-Ablated, Midcollicular Decerebrate, and Spinal Cats. Front Neural Circuits 2020;14:1. [PMID: 32174815 DOI: 10.3389/fncir.2020.00001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
17 Danner SM, Zhang H, Shevtsova NA, Borowska-Fielding J, Deska-Gauthier D, Rybak IA, Zhang Y. Spinal V3 Interneurons and Left-Right Coordination in Mammalian Locomotion. Front Cell Neurosci 2019;13:516. [PMID: 31824266 DOI: 10.3389/fncel.2019.00516] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
18 Teng YD. Functional Multipotency of Stem Cells and Recovery Neurobiology of Injured Spinal Cords. Cell Transplant 2019;28:451-9. [PMID: 31134830 DOI: 10.1177/0963689719850088] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]