BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Alié A, Devos L, Torres-Paz J, Prunier L, Boulet F, Blin M, Elipot Y, Retaux S. Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. Elife 2018;7:e32808. [PMID: 29405116 DOI: 10.7554/eLife.32808] [Cited by in Crossref: 34] [Cited by in F6Publishing: 12] [Article Influence: 8.5] [Reference Citation Analysis]
Number Citing Articles
1 Xiong S, Wang W, Kenzior A, Olsen L, Krishnan J, Persons J, Medley K, Peuß R, Wang Y, Chen S, Zhang N, Thomas N, Miles JM, Alvarado AS, Rohner N. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Curr Biol 2022:S0960-9822(22)00433-X. [PMID: 35390280 DOI: 10.1016/j.cub.2022.03.038] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Jaggard JB, Lloyd E, Yuiska A, Patch A, Fily Y, Kowalko JE, Appelbaum L, Duboue ER, Keene AC. Cavefish brain atlases reveal functional and anatomical convergence across independently evolved populations. Sci Adv 2020;6:eaba3126. [PMID: 32938683 DOI: 10.1126/sciadv.aba3126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
3 Sotelo MI, Tyan J, Dzera J, Eban-rothschild A. Sleep and motivated behaviors, from physiology to pathology. Current Opinion in Physiology 2020;15:159-66. [DOI: 10.1016/j.cophys.2020.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
4 Stahl BA, Peuß R, McDole B, Kenzior A, Jaggard JB, Gaudenz K, Krishnan J, McGaugh SE, Duboue ER, Keene AC, Rohner N. Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system. Dev Dyn 2019;248:679-87. [PMID: 30938001 DOI: 10.1002/dvdy.32] [Cited by in Crossref: 21] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
5 Loomis C, Peuß R, Jaggard JB, Wang Y, McKinney SA, Raftopoulos SC, Raftopoulos A, Whu D, Green M, McGaugh SE, Rohner N, Keene AC, Duboue ER. An Adult Brain Atlas Reveals Broad Neuroanatomical Changes in Independently Evolved Populations of Mexican Cavefish. Front Neuroanat 2019;13:88. [PMID: 31636546 DOI: 10.3389/fnana.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
6 Shafer MER, Sawh AN, Schier AF. Gene family evolution underlies cell-type diversification in the hypothalamus of teleosts. Nat Ecol Evol 2021. [PMID: 34824389 DOI: 10.1038/s41559-021-01580-3] [Reference Citation Analysis]
7 McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. J Exp Zool B Mol Dev Evol 2020;334:497-510. [PMID: 32351033 DOI: 10.1002/jez.b.22949] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Schredelseker T, Veit F, Dorsky RI, Driever W. Bsx Is Essential for Differentiation of Multiple Neuromodulatory Cell Populations in the Secondary Prosencephalon. Front Neurosci 2020;14:525. [PMID: 32581684 DOI: 10.3389/fnins.2020.00525] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
9 Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. Elife 2018;7:e32637. [PMID: 29405117 DOI: 10.7554/eLife.32637] [Cited by in Crossref: 52] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
10 Torres-Paz J, Rétaux S. Pescoids and Chimeras to Probe Early Evo-Devo in the Fish Astyanax mexicanus. Front Cell Dev Biol 2021;9:667296. [PMID: 33928092 DOI: 10.3389/fcell.2021.667296] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
11 Torres-Paz J, Hyacinthe C, Pierre C, Rétaux S. Towards an integrated approach to understand Mexican cavefish evolution. Biol Lett 2018;14:20180101. [PMID: 30089659 DOI: 10.1098/rsbl.2018.0101] [Cited by in Crossref: 16] [Cited by in F6Publishing: 8] [Article Influence: 5.3] [Reference Citation Analysis]
12 Torres-Paz J, Leclercq J, Rétaux S. Maternally regulated gastrulation as a source of variation contributing to cavefish forebrain evolution. Elife 2019;8:e50160. [PMID: 31670659 DOI: 10.7554/eLife.50160] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
13 McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. J Exp Zool B Mol Dev Evol 2020;334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
14 Schredelseker T, Driever W. Conserved Genoarchitecture of the Basal Hypothalamus in Zebrafish Embryos. Front Neuroanat 2020;14:3. [PMID: 32116574 DOI: 10.3389/fnana.2020.00003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Gupta T, Marquart GD, Horstick EJ, Tabor KM, Pajevic S, Burgess HA. Morphometric analysis and neuroanatomical mapping of the zebrafish brain. Methods 2018;150:49-62. [PMID: 29936090 DOI: 10.1016/j.ymeth.2018.06.008] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]