BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fazakerley DJ, Chaudhuri R, Yang P, Maghzal GJ, Thomas KC, Krycer JR, Humphrey SJ, Parker BL, Fisher-Wellman KH, Meoli CC, Hoffman NJ, Diskin C, Burchfield JG, Cowley MJ, Kaplan W, Modrusan Z, Kolumam G, Yang JY, Chen DL, Samocha-Bonet D, Greenfield JR, Hoehn KL, Stocker R, James DE. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife 2018;7:e32111. [PMID: 29402381 DOI: 10.7554/eLife.32111] [Cited by in Crossref: 46] [Cited by in F6Publishing: 28] [Article Influence: 11.5] [Reference Citation Analysis]
Number Citing Articles
1 DiNicolantonio JJ, McCarty MF, O'Keefe JH. Coenzyme Q10 deficiency can be expected to compromise Sirt1 activity. Open Heart 2022;9:e001927. [PMID: 35296520 DOI: 10.1136/openhrt-2021-001927] [Reference Citation Analysis]
2 Duan JY, Lin X, Xu F, Shan SK, Guo B, Li FX, Wang Y, Zheng MH, Xu QS, Lei LM, Ou-Yang WL, Wu YY, Tang KX, Yuan LQ. Ferroptosis and Its Potential Role in Metabolic Diseases: A Curse or Revitalization? Front Cell Dev Biol 2021;9:701788. [PMID: 34307381 DOI: 10.3389/fcell.2021.701788] [Reference Citation Analysis]
3 Batista TM, Garcia-Martin R, Cai W, Konishi M, O'Neill BT, Sakaguchi M, Kim JH, Jung DY, Kim JK, Kahn CR. Multi-dimensional Transcriptional Remodeling by Physiological Insulin In Vivo. Cell Rep 2019;26:3429-3443.e3. [PMID: 30893613 DOI: 10.1016/j.celrep.2019.02.081] [Cited by in Crossref: 34] [Cited by in F6Publishing: 28] [Article Influence: 17.0] [Reference Citation Analysis]
4 Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2021:S0891-5849(21)00794-2. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Reference Citation Analysis]
5 Hargreaves I, Heaton RA, Mantle D. Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int J Mol Sci 2020;21:E6695. [PMID: 32933108 DOI: 10.3390/ijms21186695] [Cited by in Crossref: 7] [Cited by in F6Publishing: 3] [Article Influence: 3.5] [Reference Citation Analysis]
6 Soubeyrand E, Johnson TS, Latimer S, Block A, Kim J, Colquhoun TA, Butelli E, Martin C, Wilson MA, Basset GJ. The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants. Plant Cell 2018;30:2910-21. [PMID: 30429224 DOI: 10.1105/tpc.18.00688] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 4.8] [Reference Citation Analysis]
7 Hidalgo-Gutiérrez A, González-García P, Díaz-Casado ME, Barriocanal-Casado E, López-Herrador S, Quinzii CM, López LC. Metabolic Targets of Coenzyme Q10 in Mitochondria. Antioxidants (Basel) 2021;10:520. [PMID: 33810539 DOI: 10.3390/antiox10040520] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Dallner G, Bentinger M, Hussain S, Sinha I, Yang J, Schwank-Xu C, Zheng X, Swiezewska E, Brismar K, Valladolid-Acebes I, Tekle M. Dehydro-Tocotrienol-β Counteracts Oxidative-Stress-Induced Diabetes Complications in db/db Mice. Antioxidants (Basel) 2021;10:1070. [PMID: 34356303 DOI: 10.3390/antiox10071070] [Reference Citation Analysis]
9 Lohman DC, Aydin D, Von Bank HC, Smith RW, Linke V, Weisenhorn E, McDevitt MT, Hutchins P, Wilkerson EM, Wancewicz B, Russell J, Stefely MS, Beebe ET, Jochem A, Coon JJ, Bingman CA, Dal Peraro M, Pagliarini DJ. An Isoprene Lipid-Binding Protein Promotes Eukaryotic Coenzyme Q Biosynthesis. Mol Cell 2019;73:763-774.e10. [PMID: 30661980 DOI: 10.1016/j.molcel.2018.11.033] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 6.0] [Reference Citation Analysis]
10 Stroud DA. ABA/ASB Omics 2018. Biophys Rev 2019;11:277-8. [PMID: 31028523 DOI: 10.1007/s12551-019-00522-5] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Fazakerley DJ, Minard AY, Krycer JR, Thomas KC, Stöckli J, Harney DJ, Burchfield JG, Maghzal GJ, Caldwell ST, Hartley RC, Stocker R, Murphy MP, James DE. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. J Biol Chem 2018;293:7315-28. [PMID: 29599292 DOI: 10.1074/jbc.RA117.001254] [Cited by in Crossref: 53] [Cited by in F6Publishing: 25] [Article Influence: 13.3] [Reference Citation Analysis]
12 Roshanravan B, Zelnick LR, Djucovic D, Gu H, Alvarez JA, Ziegler TR, Gamboa JL, Utzschneider K, Kestenbaum B, Himmelfarb J, Kahn SE, Raftery D, de Boer IH. Chronic kidney disease attenuates the plasma metabolome response to insulin. JCI Insight 2018;3:122219. [PMID: 30135309 DOI: 10.1172/jci.insight.122219] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
13 Smith CD, Lin CT, McMillin SL, Weyrauch LA, Schmidt CA, Smith CA, Kurland IJ, Witczak CA, Neufer PD. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance. Am J Physiol Endocrinol Metab 2021;320:E938-50. [PMID: 33813880 DOI: 10.1152/ajpendo.00010.2021] [Reference Citation Analysis]
14 Krycer JR, Elkington SD, Diaz-Vegas A, Cooke KC, Burchfield JG, Fisher-Wellman KH, Cooney GJ, Fazakerley DJ, James DE. Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. J Biol Chem 2020;295:99-110. [PMID: 31744882 DOI: 10.1074/jbc.RA119.011695] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
15 Kestenbaum B, Gamboa J, Liu S, Ali AS, Shankland E, Jue T, Giulivi C, Smith LR, Himmelfarb J, de Boer IH, Conley K, Roshanravan B. Impaired skeletal muscle mitochondrial bioenergetics and physical performance in chronic kidney disease. JCI Insight 2020;5:133289. [PMID: 32161192 DOI: 10.1172/jci.insight.133289] [Cited by in Crossref: 15] [Cited by in F6Publishing: 13] [Article Influence: 7.5] [Reference Citation Analysis]
16 González-García P, Hidalgo-Gutiérrez A, Mascaraque C, Barriocanal-Casado E, Bakkali M, Ziosi M, Abdihankyzy UB, Sánchez-Hernández S, Escames G, Prokisch H, Martín F, Quinzii CM, López LC. Coenzyme Q10 modulates sulfide metabolism and links the mitochondrial respiratory chain to pathways associated to one carbon metabolism. Hum Mol Genet 2020;29:3296-311. [PMID: 32975579 DOI: 10.1093/hmg/ddaa214] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
17 Martelli A, Testai L, Colletti A, Cicero AFG. Coenzyme Q10: Clinical Applications in Cardiovascular Diseases. Antioxidants (Basel) 2020;9:E341. [PMID: 32331285 DOI: 10.3390/antiox9040341] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 9.5] [Reference Citation Analysis]
18 James DE, Stöckli J, Birnbaum MJ. The aetiology and molecular landscape of insulin resistance. Nat Rev Mol Cell Biol 2021. [PMID: 34285405 DOI: 10.1038/s41580-021-00390-6] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Politis-Barber V, Brunetta HS, Paglialunga S, Petrick HL, Holloway GP. Long-term, high-fat feeding exacerbates short-term increases in adipose mitochondrial reactive oxygen species, without impairing mitochondrial respiration. Am J Physiol Endocrinol Metab 2020;319:E376-87. [PMID: 32543945 DOI: 10.1152/ajpendo.00028.2020] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
20 Stöckli J, Zadoorian A, Cooke KC, Deshpande V, Yau B, Herrmann G, Kebede MA, Humphrey SJ, James DE. ABHD15 regulates adipose tissue lipolysis and hepatic lipid accumulation. Mol Metab 2019;25:83-94. [PMID: 31105056 DOI: 10.1016/j.molmet.2019.05.002] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
21 Pastor-Maldonado CJ, Suárez-Rivero JM, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA. Coenzyme Q10: Novel Formulations and Medical Trends. Int J Mol Sci 2020;21:E8432. [PMID: 33182646 DOI: 10.3390/ijms21228432] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
22 Chen W, Tumanov S, Fazakerley DJ, Cantley J, James DE, Dunn LL, Shaik T, Suarna C, Stocker R. Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance. Redox Biol 2021;47:102152. [PMID: 34610553 DOI: 10.1016/j.redox.2021.102152] [Reference Citation Analysis]
23 Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL, James DE. Muscle and adipose tissue insulin resistance: malady without mechanism? J Lipid Res 2019;60:1720-32. [PMID: 30054342 DOI: 10.1194/jlr.R087510] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 6.3] [Reference Citation Analysis]
24 Fazakerley DJ, Fritzen AM, Nelson ME, Thorius IH, Cooke KC, Humphrey SJ, Cooney GJ, James DE. Insulin Tolerance Test under Anaesthesia to Measure Tissue-specific Insulin-stimulated Glucose Disposal. Bio Protoc 2019;9:e3146. [PMID: 33654891 DOI: 10.21769/BioProtoc.3146] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 1.3] [Reference Citation Analysis]
25 Krycer JR, Quek LE, Francis D, Fazakerley DJ, Elkington SD, Diaz-Vegas A, Cooke KC, Weiss FC, Duan X, Kurdyukov S, Zhou PX, Tambar UK, Hirayama A, Ikeda S, Kamei Y, Soga T, Cooney GJ, James DE. Lactate production is a prioritized feature of adipocyte metabolism. J Biol Chem 2020;295:83-98. [PMID: 31690627 DOI: 10.1074/jbc.RA119.011178] [Cited by in Crossref: 15] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
26 Hadrava Vanova K, Kraus M, Neuzil J, Rohlena J. Mitochondrial complex II and reactive oxygen species in disease and therapy. Redox Rep 2020;25:26-32. [PMID: 32290794 DOI: 10.1080/13510002.2020.1752002] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 19.0] [Reference Citation Analysis]
27 Norris D, Yang P, Shin SY, Kearney AL, Kim HJ, Geddes T, Senior AM, Fazakerley DJ, Nguyen LK, James DE, Burchfield JG. Signaling Heterogeneity is Defined by Pathway Architecture and Intercellular Variability in Protein Expression. iScience 2021;24:102118. [PMID: 33659881 DOI: 10.1016/j.isci.2021.102118] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
28 Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, Varela-López A. The Paradox of Coenzyme Q10 in Aging. Nutrients 2019;11:E2221. [PMID: 31540029 DOI: 10.3390/nu11092221] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
29 Hidalgo-Gutiérrez A, Barriocanal-Casado E, Bakkali M, Díaz-Casado ME, Sánchez-Maldonado L, Romero M, Sayed RK, Prehn C, Escames G, Duarte J, Acuña-Castroviejo D, López LC. β-RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in Coq9 R239X mice. EMBO Mol Med 2019;11:e9466. [PMID: 30482867 DOI: 10.15252/emmm.201809466] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
30 Hidalgo-Gutiérrez A, Barriocanal-Casado E, Díaz-Casado ME, González-García P, Zenezini Chiozzi R, Acuña-Castroviejo D, López LC. β-RA Targets Mitochondrial Metabolism and Adipogenesis, Leading to Therapeutic Benefits against CoQ Deficiency and Age-Related Overweight. Biomedicines 2021;9:1457. [PMID: 34680574 DOI: 10.3390/biomedicines9101457] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 2021. [PMID: 34621061 DOI: 10.1038/s41580-021-00415-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S. Is Mitochondrial Dysfunction a Common Root of Noncommunicable Chronic Diseases? Endocr Rev 2020;41:bnaa005. [PMID: 32179913 DOI: 10.1210/endrev/bnaa005] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 13.0] [Reference Citation Analysis]
33 González-García P, Barriocanal-Casado E, Díaz-Casado ME, López-Herrador S, Hidalgo-Gutiérrez A, López LC. Animal Models of Coenzyme Q Deficiency: Mechanistic and Translational Learnings. Antioxidants (Basel) 2021;10:1687. [PMID: 34829558 DOI: 10.3390/antiox10111687] [Reference Citation Analysis]
34 Su Z, Burchfield JG, Yang P, Humphrey SJ, Yang G, Francis D, Yasmin S, Shin SY, Norris DM, Kearney AL, Astore MA, Scavuzzo J, Fisher-Wellman KH, Wang QP, Parker BL, Neely GG, Vafaee F, Chiu J, Yeo R, Hogg PJ, Fazakerley DJ, Nguyen LK, Kuyucak S, James DE. Global redox proteome and phosphoproteome analysis reveals redox switch in Akt. Nat Commun 2019;10:5486. [PMID: 31792197 DOI: 10.1038/s41467-019-13114-4] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 9.7] [Reference Citation Analysis]
35 Xirouchaki CE, Jia Y, McGrath MJ, Greatorex S, Tran M, Merry TL, Hong D, Eramo MJ, Broome SC, Woodhead JST, D'souza RF, Gallagher J, Salimova E, Huang C, Schittenhelm RB, Sadoshima J, Watt MJ, Mitchell CA, Tiganis T. Skeletal muscle NOX4 is required for adaptive responses that prevent insulin resistance. Sci Adv 2021;7:eabl4988. [PMID: 34910515 DOI: 10.1126/sciadv.abl4988] [Reference Citation Analysis]