BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mahadevan V, Khademullah CS, Dargaei Z, Chevrier J, Uvarov P, Kwan J, Bagshaw RD, Pawson T, Emili A, De Koninck Y, Anggono V, Airaksinen M, Woodin MA. Native KCC2 interactome reveals PACSIN1 as a critical regulator of synaptic inhibition. Elife 2017;6:e28270. [PMID: 29028184 DOI: 10.7554/eLife.28270] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023;103:1095-135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Reference Citation Analysis]
2 Yuan S, He SH, Li LY, Xi S, Weng H, Zhang JH, Wang DQ, Guo MM, Zhang H, Wang SY, Ming DJ, Liu MY, Hu H, Zeng XT. A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m(6)A reader YTHDC1. Cell Death Dis 2023;14:7. [PMID: 36609444 DOI: 10.1038/s41419-022-05544-8] [Reference Citation Analysis]
3 Fudo S, Verkhovskaya M, Scala CD, Rivera C, Kajander T. Biophysical and functional characterization of K+-Cl- co-transporters from Drosophila melanogaster and Hydra vulgaris.. [DOI: 10.1101/2022.05.12.491617] [Reference Citation Analysis]
4 Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022;15:817013. [DOI: 10.3389/fncel.2021.817013] [Reference Citation Analysis]
5 Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021;14:712609. [PMID: 34630033 DOI: 10.3389/fnmol.2021.712609] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
6 Dvorak V, Wiedmer T, Ingles-Prieto A, Altermatt P, Batoulis H, Bärenz F, Bender E, Digles D, Dürrenberger F, Heitman LH, IJzerman AP, Kell DB, Kickinger S, Körzö D, Leippe P, Licher T, Manolova V, Rizzetto R, Sassone F, Scarabottolo L, Schlessinger A, Schneider V, Sijben HJ, Steck AL, Sundström H, Tremolada S, Wilhelm M, Wright Muelas M, Zindel D, Steppan CM, Superti-Furga G. An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Front Pharmacol 2021;12:722889. [PMID: 34447313 DOI: 10.3389/fphar.2021.722889] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
7 Zimu Z, Jia Z, Xian F, Rui M, Yuting R, Yuan W, Tianhong W, Mian M, Yinlong L, Enfang S. Decreased Expression of PACSIN1 in Brain Glioma Samples Predicts Poor Prognosis. Front Mol Biosci 2021;8:696072. [PMID: 34422904 DOI: 10.3389/fmolb.2021.696072] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Korgan AC, Wei W, Martin SLA, Kaczorowski CC, O’connell KM. High-fat diet induced loss of GABAergic inhibition decouples intrinsic and synaptic excitability in AgRP neurons.. [DOI: 10.1101/2021.05.31.446473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Tang X, Jaenisch R, Sur M. The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021;22:290-307. [PMID: 33772226 DOI: 10.1038/s41583-021-00443-x] [Cited by in Crossref: 34] [Cited by in F6Publishing: 40] [Article Influence: 17.0] [Reference Citation Analysis]
10 Smalley JL, Kontou G, Choi C, Ren Q, Albrecht D, Abiraman K, Santos MAR, Bope CE, Deeb TZ, Davies PA, Brandon NJ, Moss SJ. Isolation and Characterization of Multi-Protein Complexes Enriched in the K-Cl Co-transporter 2 From Brain Plasma Membranes. Front Mol Neurosci 2020;13:563091. [PMID: 33192291 DOI: 10.3389/fnmol.2020.563091] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
11 Zimanyi CM, Guo M, Mahmood A, Hendrickson WA, Hirsh D, Cheung J. Structure of the Regulatory Cytosolic Domain of a Eukaryotic Potassium-Chloride Cotransporter. Structure 2020;28:1051-1060.e4. [PMID: 32679039 DOI: 10.1016/j.str.2020.06.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
12 Hurd YL, Manzoni OJ, Pletnikov MV, Lee FS, Bhattacharyya S, Melis M. Cannabis and the Developing Brain: Insights into Its Long-Lasting Effects. J Neurosci 2019;39:8250-8. [PMID: 31619494 DOI: 10.1523/JNEUROSCI.1165-19.2019] [Cited by in Crossref: 81] [Cited by in F6Publishing: 87] [Article Influence: 27.0] [Reference Citation Analysis]
13 Llano O, Rivera C, Ludwig A. KCC2 regulates dendritic spine development. Neuronal Chloride Transporters in Health and Disease 2020. [DOI: 10.1016/b978-0-12-815318-5.00006-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Pressey JC, Mahadevan V, Woodin MA. KCC2 is a hub protein that balances excitation and inhibition. Neuronal Chloride Transporters in Health and Disease 2020. [DOI: 10.1016/b978-0-12-815318-5.00008-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
15 Mahadevan V. Protein interaction partners of neuronal chloride transporters. Neuronal Chloride Transporters in Health and Disease 2020. [DOI: 10.1016/b978-0-12-815318-5.00012-1] [Reference Citation Analysis]
16 Pozzi D, Chini B. Quest for pharmacological regulators of KCC2. Neuronal Chloride Transporters in Health and Disease 2020. [DOI: 10.1016/b978-0-12-815318-5.00026-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Mahadevan V, Woodin MA. A historical overview of chloride transporter research. Neuronal Chloride Transporters in Health and Disease 2020. [DOI: 10.1016/b978-0-12-815318-5.00001-7] [Reference Citation Analysis]
18 Chevy Q, Simonnet C, Al Awabdh S, Lévi S, Poncer JC. Transport-dependent and independent functions of KCC2 at excitatory synapses. Neuronal Chloride Transporters in Health and Disease 2020. [DOI: 10.1016/b978-0-12-815318-5.00007-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
19 Pisella LI, Gaiarsa JL, Diabira D, Zhang J, Khalilov I, Duan J, Kahle KT, Medina I. Impaired regulation of KCC2 phosphorylation leads to neuronal network dysfunction and neurodevelopmental pathology. Sci Signal 2019;12:eaay0300. [PMID: 31615899 DOI: 10.1126/scisignal.aay0300] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 8.3] [Reference Citation Analysis]
20 Petrov AM, Mast N, Li Y, Pikuleva IA. The key genes, phosphoproteins, processes, and pathways affected by efavirenz-activated CYP46A1 in the amyloid-decreasing paradigm of efavirenz treatment. FASEB J 2019;33:8782-98. [PMID: 31063705 DOI: 10.1096/fj.201900092R] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
21 Côme E, Heubl M, Schwartz EJ, Poncer JC, Lévi S. Reciprocal Regulation of KCC2 Trafficking and Synaptic Activity. Front Cell Neurosci 2019;13:48. [PMID: 30842727 DOI: 10.3389/fncel.2019.00048] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 4.0] [Reference Citation Analysis]
22 Garand D, Mahadevan V, Woodin MA. Ionotropic and metabotropic kainate receptor signalling regulates Cl- homeostasis and GABAergic inhibition. J Physiol 2019;597:1677-90. [PMID: 30570751 DOI: 10.1113/JP276901] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
23 Park DI, Turck CW. Interactome Studies of Psychiatric Disorders. Adv Exp Med Biol 2019;1118:163-73. [PMID: 30747422 DOI: 10.1007/978-3-030-05542-4_8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
24 Goutierre M, Awabdh SA, François E, Gomez-dominguez D, Irinopoulou T, de la Prida LM, Poncer JC. KCC2 regulates neuronal excitability and hippocampal activity via interaction with Task-3 channels.. [DOI: 10.1101/434571] [Reference Citation Analysis]
25 Miller ML, Chadwick B, Dickstein DL, Purushothaman I, Egervari G, Rahman T, Tessereau C, Hof PR, Roussos P, Shen L, Baxter MG, Hurd YL. Adolescent exposure to Δ9-tetrahydrocannabinol alters the transcriptional trajectory and dendritic architecture of prefrontal pyramidal neurons. Mol Psychiatry 2019;24:588-600. [PMID: 30283037 DOI: 10.1038/s41380-018-0243-x] [Cited by in Crossref: 63] [Cited by in F6Publishing: 66] [Article Influence: 12.6] [Reference Citation Analysis]
26 Ayoub HM, McDonald MR, Sullivan JA, Tsao R, Meckling KA. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables. Nutrients 2018;10:E456. [PMID: 29642414 DOI: 10.3390/nu10040456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
27 Maffei A, Charrier C, Caiati MD, Barberis A, Mahadevan V, Woodin MA, Tyagarajan SK. Emerging Mechanisms Underlying Dynamics of GABAergic Synapses. J Neurosci 2017;37:10792-9. [PMID: 29118207 DOI: 10.1523/JNEUROSCI.1824-17.2017] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 2.5] [Reference Citation Analysis]