BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Do JP, Xu M, Lee SH, Chang WC, Zhang S, Chung S, Yung TJ, Fan JL, Miyamichi K, Luo L, Dan Y. Cell type-specific long-range connections of basal forebrain circuit. Elife 2016;5:e13214. [PMID: 27642784 DOI: 10.7554/eLife.13214] [Cited by in Crossref: 48] [Cited by in F6Publishing: 36] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 McKenna JT, Yang C, Bellio T, Anderson-Chernishof MB, Gamble MC, Hulverson A, McCoy JG, Winston S, Hodges E, Katsuki F, McNally JM, Basheer R, Brown RE. Characterization of basal forebrain glutamate neurons suggests a role in control of arousal and avoidance behavior. Brain Struct Funct 2021;226:1755-78. [PMID: 33997911 DOI: 10.1007/s00429-021-02288-7] [Reference Citation Analysis]
2 Nair J, Klaassen AL, Arato J, Vyssotski AL, Harvey M, Rainer G. Basal forebrain contributes to default mode network regulation. Proc Natl Acad Sci U S A 2018;115:1352-7. [PMID: 29363595 DOI: 10.1073/pnas.1712431115] [Cited by in Crossref: 27] [Cited by in F6Publishing: 24] [Article Influence: 6.8] [Reference Citation Analysis]
3 Faget L, Zell V, Souter E, McPherson A, Ressler R, Gutierrez-Reed N, Yoo JH, Dulcis D, Hnasko TS. Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum. Nat Commun 2018;9:849. [PMID: 29487284 DOI: 10.1038/s41467-018-03125-y] [Cited by in Crossref: 59] [Cited by in F6Publishing: 46] [Article Influence: 14.8] [Reference Citation Analysis]
4 Robert B, Kimchi EY, Watanabe Y, Chakoma T, Jing M, Li Y, Polley DB. A functional topography within the cholinergic basal forebrain for encoding sensory cues and behavioral reinforcement outcomes. Elife 2021;10:e69514. [PMID: 34821218 DOI: 10.7554/eLife.69514] [Reference Citation Analysis]
5 Tao S, Wang Y, Peng J, Zhao Y, He X, Yu X, Liu Q, Jin S, Xu F. Whole-Brain Mapping the Direct Inputs of Dorsal and Ventral CA1 Projection Neurons. Front Neural Circuits 2021;15:643230. [PMID: 33935658 DOI: 10.3389/fncir.2021.643230] [Reference Citation Analysis]
6 Sanz Diez A, Najac M, De Saint Jan D. Basal forebrain GABAergic innervation of olfactory bulb periglomerular interneurons. J Physiol 2019;597:2547-63. [PMID: 30920662 DOI: 10.1113/JP277811] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 4.7] [Reference Citation Analysis]
7 Agostinelli LJ, Geerling JC, Scammell TE. Basal forebrain subcortical projections. Brain Struct Funct 2019;224:1097-117. [PMID: 30612231 DOI: 10.1007/s00429-018-01820-6] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
8 Sun P, Wang J, Zhang M, Duan X, Wei Y, Xu F, Ma Y, Zhang YH. Sex-Related Differential Whole-Brain Input Atlas of Locus Coeruleus Noradrenaline Neurons. Front Neural Circuits 2020;14:53. [PMID: 33071759 DOI: 10.3389/fncir.2020.00053] [Reference Citation Analysis]
9 Huang L, Chen Y, Jin S, Lin L, Duan S, Si K, Gong W, Julius Zhu J. Organizational principles of amygdalar input-output neuronal circuits. Mol Psychiatry 2021. [PMID: 34400771 DOI: 10.1038/s41380-021-01262-3] [Reference Citation Analysis]
10 Obermayer J, Heistek TS, Kerkhofs A, Goriounova NA, Kroon T, Baayen JC, Idema S, Testa-Silva G, Couey JJ, Mansvelder HD. Lateral inhibition by Martinotti interneurons is facilitated by cholinergic inputs in human and mouse neocortex. Nat Commun 2018;9:4101. [PMID: 30291244 DOI: 10.1038/s41467-018-06628-w] [Cited by in Crossref: 31] [Cited by in F6Publishing: 22] [Article Influence: 7.8] [Reference Citation Analysis]
11 Adams NE, Teige C, Mollo G, Karapanagiotidis T, Cornelissen PL, Smallwood J, Traub RD, Jefferies E, Whittington MA. Theta/delta coupling across cortical laminae contributes to semantic cognition. J Neurophysiol 2019;121:1150-61. [PMID: 30699059 DOI: 10.1152/jn.00686.2018] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
12 Swanson JL, Chin P, Romero JM, Srivastava S, Ortiz-guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022;16:886302. [DOI: 10.3389/fncir.2022.886302] [Reference Citation Analysis]
13 Ren C, Peng K, Yang R, Liu W, Liu C, Komiyama T. Global and subtype-specific modulation of cortical inhibitory neurons regulated by acetylcholine during motor learning. Neuron 2022:S0896-6273(22)00408-1. [PMID: 35584693 DOI: 10.1016/j.neuron.2022.04.031] [Reference Citation Analysis]
14 Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018;48:2199-230. [PMID: 30055067 DOI: 10.1111/ejn.14089] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 8.3] [Reference Citation Analysis]
15 Luo P, Li A, Zheng Y, Han Y, Tian J, Xu Z, Gong H, Li X. Whole Brain Mapping of Long-Range Direct Input to Glutamatergic and GABAergic Neurons in Motor Cortex. Front Neuroanat 2019;13:44. [PMID: 31057372 DOI: 10.3389/fnana.2019.00044] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
16 Meir I, Katz Y, Lampl I. Membrane Potential Correlates of Network Decorrelation and Improved SNR by Cholinergic Activation in the Somatosensory Cortex. J Neurosci 2018;38:10692-708. [PMID: 30373769 DOI: 10.1523/JNEUROSCI.1159-18.2018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 3.8] [Reference Citation Analysis]
17 Luo TY, Cai S, Qin ZX, Yang SC, Shu Y, Liu CX, Zhang Y, Zhang L, Zhou L, Yu T, Yu SY. Basal Forebrain Cholinergic Activity Modulates Isoflurane and Propofol Anesthesia. Front Neurosci 2020;14:559077. [PMID: 33192246 DOI: 10.3389/fnins.2020.559077] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
18 Yang JH, Kwan AC. Secondary motor cortex: Broadcasting and biasing animal's decisions through long-range circuits. Int Rev Neurobiol 2021;158:443-70. [PMID: 33785155 DOI: 10.1016/bs.irn.2020.11.008] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Yuan XS, Wang L, Dong H, Qu WM, Yang SR, Cherasse Y, Lazarus M, Schiffmann SN, d'Exaerde AK, Li RX, Huang ZL. Striatal adenosine A2A receptor neurons control active-period sleep via parvalbumin neurons in external globus pallidus. Elife 2017;6:e29055. [PMID: 29022877 DOI: 10.7554/eLife.29055] [Cited by in Crossref: 41] [Cited by in F6Publishing: 18] [Article Influence: 8.2] [Reference Citation Analysis]
20 Sviatkó K, Hangya B. Monitoring the Right Collection: The Central Cholinergic Neurons as an Instructive Example. Front Neural Circuits 2017;11:31. [PMID: 28496401 DOI: 10.3389/fncir.2017.00031] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
21 Yuan XS, Wei HH, Xu W, Wang L, Qu WM, Li RX, Huang ZL. Whole-Brain Monosynaptic Afferent Projections to the Cholecystokinin Neurons of the Suprachiasmatic Nucleus. Front Neurosci 2018;12:807. [PMID: 30455627 DOI: 10.3389/fnins.2018.00807] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
22 Li Z, Chen Z, Fan G, Li A, Yuan J, Xu T. Cell-Type-Specific Afferent Innervation of the Nucleus Accumbens Core and Shell. Front Neuroanat 2018;12:84. [PMID: 30459564 DOI: 10.3389/fnana.2018.00084] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 8.8] [Reference Citation Analysis]
23 Yague JG, Tsunematsu T, Sakata S. Distinct Temporal Coordination of Spontaneous Population Activity between Basal Forebrain and Auditory Cortex. Front Neural Circuits 2017;11:64. [PMID: 28959191 DOI: 10.3389/fncir.2017.00064] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
24 Frankowski JC, Tierno A, Pavani S, Cao Q, Lyon DC, Hunt RF. Brain-wide reconstruction of inhibitory circuits after traumatic brain injury. Nat Commun 2022;13:3417. [PMID: 35701434 DOI: 10.1038/s41467-022-31072-2] [Reference Citation Analysis]
25 McNally JM, Aguilar DD, Katsuki F, Radzik LK, Schiffino FL, Uygun DS, McKenna JT, Strecker RE, Deisseroth K, Spencer KM, Brown RE. Optogenetic manipulation of an ascending arousal system tunes cortical broadband gamma power and reveals functional deficits relevant to schizophrenia. Mol Psychiatry 2020. [PMID: 32690865 DOI: 10.1038/s41380-020-0840-3] [Cited by in Crossref: 8] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
26 Cai S, Tang AC, Luo TY, Yang SC, Yang H, Liu CX, Shu Y, Pan YC, Zhang Y, Zhou L, Yu T, Yu SY. Effect of basal forebrain somatostatin and parvalbumin neurons in propofol and isoflurane anesthesia. CNS Neurosci Ther 2021;27:792-804. [PMID: 33764684 DOI: 10.1111/cns.13635] [Reference Citation Analysis]
27 Wang J, Li J, Yang Q, Xie YK, Wen YL, Xu ZZ, Li Y, Xu T, Wu ZY, Duan S, Xu H. Basal forebrain mediates prosocial behavior via disinhibition of midbrain dopamine neurons. Proc Natl Acad Sci U S A 2021;118:e2019295118. [PMID: 33563763 DOI: 10.1073/pnas.2019295118] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
28 Roman-Ortiz C, Guevara JA, Clem RL. GABAergic basal forebrain projections to the periaqueductal gray promote food consumption, reward and predation. Sci Rep 2021;11:22638. [PMID: 34811442 DOI: 10.1038/s41598-021-02157-7] [Reference Citation Analysis]
29 Patel JM, Swanson J, Ung K, Herman A, Hanson E, Ortiz-Guzman J, Selever J, Tong Q, Arenkiel BR. Sensory perception drives food avoidance through excitatory basal forebrain circuits. Elife 2019;8:e44548. [PMID: 31074744 DOI: 10.7554/eLife.44548] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
30 Wee RWS, MacAskill AF. Biased Connectivity of Brain-wide Inputs to Ventral Subiculum Output Neurons. Cell Rep 2020;30:3644-3654.e6. [PMID: 32187537 DOI: 10.1016/j.celrep.2020.02.093] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
31 Zingg B, Peng B, Huang J, Tao HW, Zhang LI. Synaptic Specificity and Application of Anterograde Transsynaptic AAV for Probing Neural Circuitry. J Neurosci 2020;40:3250-67. [PMID: 32198185 DOI: 10.1523/JNEUROSCI.2158-19.2020] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 15.0] [Reference Citation Analysis]
32 Klaassen AL, Heiniger A, Vaca Sánchez P, Harvey MA, Rainer G. Ventral pallidum regulates the default mode network, controlling transitions between internally and externally guided behavior. Proc Natl Acad Sci U S A 2021;118:e2103642118. [PMID: 34462351 DOI: 10.1073/pnas.2103642118] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Kumbhare D, Palys V, Toms J, Wickramasinghe CS, Amarasinghe K, Manic M, Hughes E, Holloway KL. Nucleus Basalis of Meynert Stimulation for Dementia: Theoretical and Technical Considerations. Front Neurosci 2018;12:614. [PMID: 30233297 DOI: 10.3389/fnins.2018.00614] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
34 Shen L, Zhang G, Tao C, Seo MB, Zhang NK, Huang JJ, Zhang LI, Tao HW. A bottom-up reward pathway mediated by somatostatin neurons in the medial septum complex underlying appetitive learning. Nat Commun 2022;13. [DOI: 10.1038/s41467-022-28854-z] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
35 Melzer S, Monyer H. Diversity and function of corticopetal and corticofugal GABAergic projection neurons. Nat Rev Neurosci 2020;21:499-515. [PMID: 32747763 DOI: 10.1038/s41583-020-0344-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
36 Jiang T, Long B, Gong H, Xu T, Li X, Duan Z, Li A, Deng L, Zhong Q, Peng X, Yuan J. A platform for efficient identification of molecular phenotypes of brain-wide neural circuits. Sci Rep 2017;7:13891. [PMID: 29066836 DOI: 10.1038/s41598-017-14360-6] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 2.6] [Reference Citation Analysis]
37 Chen C, Cheng M, Ito T, Song S. Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type-Dependent Monosynaptic Tracing. J Neurosci 2018;38:3318-32. [PMID: 29483283 DOI: 10.1523/JNEUROSCI.2173-17.2018] [Cited by in Crossref: 24] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
38 Hanson E, Swanson J, Arenkiel BR. GABAergic Input From the Basal Forebrain Promotes the Survival of Adult-Born Neurons in the Mouse Olfactory Bulb. Front Neural Circuits 2020;14:17. [PMID: 32390805 DOI: 10.3389/fncir.2020.00017] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
39 Matsuo K, Yabuki Y, Melki R, Bousset L, Owada Y, Fukunaga K. Crucial Role of FABP3 in αSyn-Induced Reduction of Septal GABAergic Neurons and Cognitive Decline in Mice. Int J Mol Sci 2021;22:E400. [PMID: 33401521 DOI: 10.3390/ijms22010400] [Reference Citation Analysis]
40 Ghimire M, Cai R, Ling L, Hackett TA, Caspary DM. Nicotinic Receptor Subunit Distribution in Auditory Cortex: Impact of Aging on Receptor Number and Function. J Neurosci 2020;40:5724-39. [PMID: 32541068 DOI: 10.1523/JNEUROSCI.0093-20.2020] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
41 Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018;38:9446-58. [PMID: 30381436 DOI: 10.1523/JNEUROSCI.1676-18.2018] [Cited by in Crossref: 54] [Cited by in F6Publishing: 22] [Article Influence: 18.0] [Reference Citation Analysis]
42 Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience 2017;352:249-61. [PMID: 28411158 DOI: 10.1016/j.neuroscience.2017.04.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
43 Marumo C, Nakano T. Early phase of pupil dilation is mediated by the peripheral parasympathetic pathway. J Neurophysiol 2021;126:2130-7. [PMID: 34851753 DOI: 10.1152/jn.00401.2021] [Reference Citation Analysis]
44 Wang Y, Shen Y, Cai X, Yu J, Chen C, Tan B, Tan N, Cheng H, Fan X, Wu X, Liu J, Wang S, Wang Y, Chen Z. Deep brain stimulation in the medial septum attenuates temporal lobe epilepsy via entrainment of hippocampal theta rhythm. CNS Neurosci Ther 2021;27:577-86. [PMID: 33502829 DOI: 10.1111/cns.13617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
45 Gehrlach DA, Weiand C, Gaitanos TN, Cho E, Klein AS, Hennrich AA, Conzelmann KK, Gogolla N. A whole-brain connectivity map of mouse insular cortex. Elife 2020;9:e55585. [PMID: 32940600 DOI: 10.7554/eLife.55585] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 10.5] [Reference Citation Analysis]