BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Singh C, Oikonomou G, Prober DA. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish. Elife 2015;4:e07000. [PMID: 26374985 DOI: 10.7554/eLife.07000] [Cited by in Crossref: 61] [Cited by in F6Publishing: 40] [Article Influence: 8.7] [Reference Citation Analysis]
Number Citing Articles
1 Elbaz I, Zada D, Tovin A, Braun T, Lerer-Goldshtein T, Wang G, Mourrain P, Appelbaum L. Sleep-Dependent Structural Synaptic Plasticity of Inhibitory Synapses in the Dendrites of Hypocretin/Orexin Neurons. Mol Neurobiol 2017;54:6581-97. [PMID: 27734337 DOI: 10.1007/s12035-016-0175-x] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
2 Niu L, Li Y, Zong P, Liu P, Shui Y, Chen B, Wang ZW. Melatonin promotes sleep by activating the BK channel in C. elegans. Proc Natl Acad Sci U S A 2020;117:25128-37. [PMID: 32958651 DOI: 10.1073/pnas.2010928117] [Reference Citation Analysis]
3 Imperatore R, D'Angelo L, Safari O, Motlagh HA, Piscitelli F, de Girolamo P, Cristino L, Varricchio E, di Marzo V, Paolucci M. Overlapping Distribution of Orexin and Endocannabinoid Receptors and Their Functional Interaction in the Brain of Adult Zebrafish. Front Neuroanat 2018;12:62. [PMID: 30104964 DOI: 10.3389/fnana.2018.00062] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
4 Oikonomou G, Prober DA. Attacking sleep from a new angle: contributions from zebrafish. Curr Opin Neurobiol 2017;44:80-8. [PMID: 28391131 DOI: 10.1016/j.conb.2017.03.009] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 4.0] [Reference Citation Analysis]
5 Spikol ED, Laverriere CE, Robnett M, Carter G, Wolfe EM, Glasgow E. Zebrafish Models of Prader-Willi Syndrome: Fast Track to Pharmacotherapeutics. Diseases 2016;4:13. [PMID: 27857842 DOI: 10.3390/diseases4010013] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
6 Xiao T, Ackerman CM, Carroll EC, Jia S, Hoagland A, Chan J, Thai B, Liu CS, Isacoff EY, Chang CJ. Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol 2018;14:655-63. [PMID: 29867144 DOI: 10.1038/s41589-018-0062-z] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 10.5] [Reference Citation Analysis]
7 Jaggard JB, Lloyd E, Yuiska A, Patch A, Fily Y, Kowalko JE, Appelbaum L, Duboue ER, Keene AC. Cavefish brain atlases reveal functional and anatomical convergence across independently evolved populations. Sci Adv 2020;6:eaba3126. [PMID: 32938683 DOI: 10.1126/sciadv.aba3126] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Chen A, Singh C, Oikonomou G, Prober DA. Genetic Analysis of Histamine Signaling in Larval Zebrafish Sleep. eNeuro 2017;4:ENEURO. [PMID: 28275716 DOI: 10.1523/ENEURO.0286-16.2017] [Cited by in Crossref: 17] [Cited by in F6Publishing: 8] [Article Influence: 3.4] [Reference Citation Analysis]
9 Wagle M, Zarei M, Lovett-Barron M, Poston KT, Xu J, Ramey V, Pollard KS, Prober DA, Schulkin J, Deisseroth K, Guo S. Brain-wide perception of the emotional valence of light is regulated by distinct hypothalamic neurons. Mol Psychiatry 2022. [PMID: 35484242 DOI: 10.1038/s41380-022-01567-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Merikangas KR, Swendsen J, Hickie IB, Cui L, Shou H, Merikangas AK, Zhang J, Lamers F, Crainiceanu C, Volkow ND, Zipunnikov V. Real-time Mobile Monitoring of the Dynamic Associations Among Motor Activity, Energy, Mood, and Sleep in Adults With Bipolar Disorder. JAMA Psychiatry 2019;76:190-8. [PMID: 30540352 DOI: 10.1001/jamapsychiatry.2018.3546] [Cited by in Crossref: 61] [Cited by in F6Publishing: 53] [Article Influence: 30.5] [Reference Citation Analysis]
11 Yamazaki R, Toda H, Libourel PA, Hayashi Y, Vogt KE, Sakurai T. Evolutionary Origin of Distinct NREM and REM Sleep. Front Psychol 2020;11:567618. [PMID: 33381062 DOI: 10.3389/fpsyg.2020.567618] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Li S, Franken P, Vassalli A. Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018;8:15474. [PMID: 30341359 DOI: 10.1038/s41598-018-33069-8] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.8] [Reference Citation Analysis]
13 Prober DA. Discovery of Hypocretin/Orexin Ushers in a New Era of Sleep Research. Trends Neurosci 2018;41:70-2. [PMID: 29405929 DOI: 10.1016/j.tins.2017.11.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
14 Doldur-balli F, Imamura T, Veatch O, Gong N, Lim D, Hart M, Abel T, Kayser M, Brodkin E, Pack A. Synaptic Dysfunction Connects Autism Spectrum Disorder and Sleep Disturbances: A Perspective from Studies in Model Organisms. Sleep Medicine Reviews 2022. [DOI: 10.1016/j.smrv.2022.101595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. Elife 2018;7:e32637. [PMID: 29405117 DOI: 10.7554/eLife.32637] [Cited by in Crossref: 52] [Cited by in F6Publishing: 23] [Article Influence: 13.0] [Reference Citation Analysis]
16 Yamaguchi H, Hopf FW, Li SB, de Lecea L. In vivo cell type-specific CRISPR knockdown of dopamine beta hydroxylase reduces locus coeruleus evoked wakefulness. Nat Commun 2018;9:5211. [PMID: 30523254 DOI: 10.1038/s41467-018-07566-3] [Cited by in Crossref: 24] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
17 Hoyo-Alvarez E, Arechavala-Lopez P, Jiménez-García M, Solomando A, Alomar C, Sureda A, Moranta D, Deudero S. Effects of pollutants and microplastics ingestion on oxidative stress and monoaminergic activity of seabream brains. Aquat Toxicol 2022;242:106048. [PMID: 34875488 DOI: 10.1016/j.aquatox.2021.106048] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol 2017;15:6. [PMID: 28137258 DOI: 10.1186/s12915-016-0341-7] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 10.0] [Reference Citation Analysis]
19 Lee DA, Andreev A, Truong TV, Chen A, Hill AJ, Oikonomou G, Pham U, Hong YK, Tran S, Glass L, Sapin V, Engle J, Fraser SE, Prober DA. Genetic and neuronal regulation of sleep by neuropeptide VF. Elife 2017;6:e25727. [PMID: 29106375 DOI: 10.7554/eLife.25727] [Cited by in Crossref: 31] [Cited by in F6Publishing: 15] [Article Influence: 6.2] [Reference Citation Analysis]
20 Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020;96:109728. [PMID: 31394141 DOI: 10.1016/j.pnpbp.2019.109728] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
21 Joiner WJ. Unraveling the Evolutionary Determinants of Sleep. Curr Biol 2016;26:R1073-87. [PMID: 27780049 DOI: 10.1016/j.cub.2016.08.068] [Cited by in Crossref: 94] [Cited by in F6Publishing: 63] [Article Influence: 18.8] [Reference Citation Analysis]
22 Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019;43:1702-13. [PMID: 31206717 DOI: 10.1111/acer.14126] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
23 Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018;7:F1000 Faculty Rev-1421. [PMID: 30254737 DOI: 10.12688/f1000research.15097.1] [Cited by in Crossref: 23] [Cited by in F6Publishing: 18] [Article Influence: 5.8] [Reference Citation Analysis]
24 Martorell-Ribera J, Venuto MT, Otten W, Brunner RM, Goldammer T, Rebl A, Gimsa U. Time-Dependent Effects of Acute Handling on the Brain Monoamine System of the Salmonid Coregonus maraena. Front Neurosci 2020;14:591738. [PMID: 33343287 DOI: 10.3389/fnins.2020.591738] [Reference Citation Analysis]
25 Lee DA, Oikonomou G, Cammidge T, Andreev A, Hong Y, Hurley H, Prober DA. Neuropeptide VF neurons promote sleep via the serotonergic raphe. Elife 2020;9:e54491. [PMID: 33337320 DOI: 10.7554/eLife.54491] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Oikonomou G, Altermatt M, Zhang RW, Coughlin GM, Montz C, Gradinaru V, Prober DA. The Serotonergic Raphe Promote Sleep in Zebrafish and Mice. Neuron 2019;103:686-701.e8. [PMID: 31248729 DOI: 10.1016/j.neuron.2019.05.038] [Cited by in Crossref: 56] [Cited by in F6Publishing: 41] [Article Influence: 18.7] [Reference Citation Analysis]
27 Kim J, Hyun M, Hibi M, You YJ. Maintenance of quiescent oocytes by noradrenergic signals. Nat Commun 2021;12:6925. [PMID: 34836956 DOI: 10.1038/s41467-021-26945-x] [Reference Citation Analysis]
28 Frøland Steindal IA, Whitmore D. Circadian Clocks in Fish-What Have We Learned so far? Biology (Basel) 2019;8:E17. [PMID: 30893815 DOI: 10.3390/biology8010017] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 9.0] [Reference Citation Analysis]
29 Alijevic O, Jaka O, Alzualde A, Maradze D, Xia W, Frentzel S, Gifford AN, Peitsch MC, Hoeng J, Koshibu K. Differentiating the Neuropharmacological Properties of Nicotinic Acetylcholine Receptor-Activating Alkaloids. Front Pharmacol 2022;13:668065. [PMID: 35392565 DOI: 10.3389/fphar.2022.668065] [Reference Citation Analysis]
30 Singh C, Rihel J, Prober DA. Neuropeptide Y Regulates Sleep by Modulating Noradrenergic Signaling. Curr Biol 2017;27:3796-3811.e5. [PMID: 29225025 DOI: 10.1016/j.cub.2017.11.018] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 5.6] [Reference Citation Analysis]
31 Tran S, Prober DA. Validation of Candidate Sleep Disorder Risk Genes Using Zebrafish. Front Mol Neurosci 2022;15:873520. [DOI: 10.3389/fnmol.2022.873520] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Koeck B, Závorka L, Aldvén D, Näslund J, Arlinghaus R, Thörnqvist P, Winberg S, Björnsson BT, Johnsson JI. Angling selects against active and stress-resilient phenotypes in rainbow trout. Can J Fish Aquat Sci 2019;76:320-33. [DOI: 10.1139/cjfas-2018-0085] [Cited by in Crossref: 20] [Cited by in F6Publishing: 4] [Article Influence: 6.7] [Reference Citation Analysis]
33 Tan JXM, Ang RJW, Wee CL. Larval Zebrafish as a Model for Mechanistic Discovery in Mental Health. Front Mol Neurosci 2022;15:900213. [DOI: 10.3389/fnmol.2022.900213] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
34 Lyons DG, Rihel J. Sleep Circuits and Physiology in Non-Mammalian Systems. Curr Opin Physiol 2020;15:245-55. [PMID: 34738047 DOI: 10.1016/j.cophys.2020.03.006] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Duhart JM, Baccini V, Zhang Y, Machado DR, Koh K. Modulation of sleep-courtship balance by nutritional status in Drosophila. Elife 2020;9:e60853. [PMID: 33084567 DOI: 10.7554/eLife.60853] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Wang S, Wang Z, Mu Y. Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sciences 2022;12:134. [DOI: 10.3390/brainsci12020134] [Reference Citation Analysis]
37 Sugiyama E, Guerrini MM, Honda K, Hattori Y, Abe M, Källback P, Andrén PE, Tanaka KF, Setou M, Fagarasan S, Suematsu M, Sugiura Y. Detection of a High-Turnover Serotonin Circuit in the Mouse Brain Using Mass Spectrometry Imaging. iScience 2019;20:359-72. [PMID: 31614319 DOI: 10.1016/j.isci.2019.09.036] [Cited by in Crossref: 16] [Cited by in F6Publishing: 11] [Article Influence: 5.3] [Reference Citation Analysis]
38 Puttonen HAJ, Semenova S, Sundvik M, Panula P. Storage of neural histamine and histaminergic neurotransmission is VMAT2 dependent in the zebrafish. Sci Rep 2017;7:3060. [PMID: 28596586 DOI: 10.1038/s41598-017-02981-w] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
39 Chen A, Chiu CN, Mosser EA, Kahn S, Spence R, Prober DA. QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish. J Neurosci 2016;36:1823-40. [PMID: 26865608 DOI: 10.1523/JNEUROSCI.2579-15.2016] [Cited by in Crossref: 32] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
40 Zhao Y, Singh C, Prober DA, Wayne NL. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio). Endocrinology 2016;157:4012-20. [PMID: 27533887 DOI: 10.1210/en.2016-1381] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
41 Soya S, Sakurai T. Evolution of Orexin Neuropeptide System: Structure and Function. Front Neurosci 2020;14:691. [PMID: 32754010 DOI: 10.3389/fnins.2020.00691] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
42 Borgonovo J, Ahumada-Galleguillos P, Oñate-Ponce A, Allende-Castro C, Henny P, Concha ML. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front Neuroanat 2021;15:728720. [PMID: 34588961 DOI: 10.3389/fnana.2021.728720] [Reference Citation Analysis]
43 Keene AC, Duboue ER. The origins and evolution of sleep. J Exp Biol 2018;221:jeb159533. [PMID: 29895581 DOI: 10.1242/jeb.159533] [Cited by in Crossref: 33] [Cited by in F6Publishing: 23] [Article Influence: 8.3] [Reference Citation Analysis]
44 McCarroll MN, Gendelev L, Keiser MJ, Kokel D. Leveraging Large-scale Behavioral Profiling in Zebrafish to Explore Neuroactive Polypharmacology. ACS Chem Biol 2016;11:842-9. [PMID: 26845413 DOI: 10.1021/acschembio.5b00800] [Cited by in Crossref: 24] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
45 Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021;14:718951. [PMID: 34335183 DOI: 10.3389/fnmol.2021.718951] [Reference Citation Analysis]
46 Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018;43:937-52. [PMID: 29206811 DOI: 10.1038/npp.2017.294] [Cited by in Crossref: 68] [Cited by in F6Publishing: 51] [Article Influence: 13.6] [Reference Citation Analysis]
47 Bringmann H. Genetic sleep deprivation: using sleep mutants to study sleep functions. EMBO Rep 2019;20:e46807. [PMID: 30804011 DOI: 10.15252/embr.201846807] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
48 Chen S, Reichert S, Singh C, Oikonomou G, Rihel J, Prober DA. Light-Dependent Regulation of Sleep and Wake States by Prokineticin 2 in Zebrafish. Neuron 2017;95:153-168.e6. [PMID: 28648499 DOI: 10.1016/j.neuron.2017.06.001] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 6.4] [Reference Citation Analysis]
49 Cantaut-Belarif Y, Orts Del'Immagine A, Penru M, Pézeron G, Wyart C, Bardet PL. Adrenergic activation modulates the signal from the Reissner fiber to cerebrospinal fluid-contacting neurons during development. Elife 2020;9:e59469. [PMID: 33048048 DOI: 10.7554/eLife.59469] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]