BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Herman AM, Huang L, Murphey DK, Garcia I, Arenkiel BR. Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. Elife 2014;3:e01481. [PMID: 24473077 DOI: 10.7554/eLife.01481] [Cited by in Crossref: 56] [Cited by in F6Publishing: 57] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Follansbee T, Domocos D, Nguyen E, Nguyen A, Bountouvas A, Velasquez L, Iodi Carstens M, Takanami K, Ross SE, Carstens E. Inhibition of itch by neurokinin 1 receptor (Tacr1) -expressing ON cells in the rostral ventromedial medulla in mice. Elife 2022;11:e69626. [PMID: 35972457 DOI: 10.7554/eLife.69626] [Reference Citation Analysis]
2 Montemurro N, Aliaga N, Graff P, Escribano A, Lizana J. New Targets and New Technologies in the Treatment of Parkinson’s Disease: A Narrative Review. IJERPH 2022;19:8799. [DOI: 10.3390/ijerph19148799] [Reference Citation Analysis]
3 Baleisyte A, Schneggenburger R, Kochubey O. Stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsins yields opposite behavioral outcomes. Cell Rep 2022;39:110850. [PMID: 35613578 DOI: 10.1016/j.celrep.2022.110850] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Tan P, He L, Huang Y, Zhou Y. Optophysiology: Illuminating cell physiology with optogenetics. Physiol Rev 2022. [PMID: 35072525 DOI: 10.1152/physrev.00021.2021] [Cited by in Crossref: 17] [Cited by in F6Publishing: 7] [Article Influence: 17.0] [Reference Citation Analysis]
5 Călin A, Ilie AS, Akerman CJ. Disrupting Epileptiform Activity by Preventing Parvalbumin Interneuron Depolarization Block. J Neurosci 2021;41:9452-65. [PMID: 34611025 DOI: 10.1523/JNEUROSCI.1002-20.2021] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
6 Stahl JS, Ketting-Olivier A, Tendolkar PA, Connor TL. Impact of Purkinje Cell Simple Spike Synchrony on Signal Transmission from Flocculus. Cerebellum 2021. [PMID: 34665396 DOI: 10.1007/s12311-021-01332-w] [Reference Citation Analysis]
7 Vegas-Suárez S, Aristieta A, Requejo C, Bengoetxea H, Lafuente JV, Miguelez C, Ugedo L. The effect of 5-HT1A receptor agonists on the entopeduncular nucleus is modified in 6-hydroxydopamine-lesioned rats. Br J Pharmacol 2021;178:2516-32. [PMID: 33686657 DOI: 10.1111/bph.15437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
8 Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, Matlashov ME, Li X, Yang W, Nie L, Shcherbakova DM, Kozorovitskiy Y, Yao J, Ji N, Verkhusha VV. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat Biotechnol 2021;39:368-77. [PMID: 33106681 DOI: 10.1038/s41587-020-0710-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 38] [Article Influence: 7.5] [Reference Citation Analysis]
9 Antonoudiou P, Tan YL, Kontou G, Upton AL, Mann EO. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations. J Neurosci 2020;40:7668-87. [PMID: 32859716 DOI: 10.1523/JNEUROSCI.0261-20.2020] [Cited by in Crossref: 18] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
10 Lopez AL 3rd, Wang S, Larina IV. Optogenetic cardiac pacing in cultured mouse embryos under imaging guidance. J Biophotonics 2020;13:e202000223. [PMID: 32692902 DOI: 10.1002/jbio.202000223] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
11 Octeau JC, Gangwani MR, Allam SL, Tran D, Huang S, Hoang-Trong TM, Golshani P, Rumbell TH, Kozloski JR, Khakh BS. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep 2019;27:2249-2261.e7. [PMID: 31116972 DOI: 10.1016/j.celrep.2019.04.078] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 14.5] [Reference Citation Analysis]
12 Watanabe H, Sano H, Chiken S, Kobayashi K, Fukata Y, Fukata M, Mushiake H, Nambu A. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex. Nat Commun 2020;11:3253. [PMID: 32591505 DOI: 10.1038/s41467-020-16883-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
13 Laszlovszky T, Schlingloff D, Hegedüs P, Freund TF, Gulyás A, Kepecs A, Hangya B. Distinct synchronization, cortical coupling and behavioral function of two basal forebrain cholinergic neuron types. Nat Neurosci 2020;23:992-1003. [PMID: 32572235 DOI: 10.1038/s41593-020-0648-0] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
14 Luo L, Callaway EM, Svoboda K. Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron 2018;98:256-81. [PMID: 29673479 DOI: 10.1016/j.neuron.2018.03.040] [Cited by in Crossref: 178] [Cited by in F6Publishing: 163] [Article Influence: 59.3] [Reference Citation Analysis]
15 Chamessian A, Matsuda M, Young M, Wang M, Zhang ZJ, Liu D, Tobin B, Xu ZZ, Van de Ven T, Ji RR. Is Optogenetic Activation of Vglut1-Positive Aβ Low-Threshold Mechanoreceptors Sufficient to Induce Tactile Allodynia in Mice after Nerve Injury? J Neurosci 2019;39:6202-15. [PMID: 31152125 DOI: 10.1523/JNEUROSCI.2064-18.2019] [Cited by in Crossref: 9] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
16 Böhm M, Chung DY, Gómez CA, Qin T, Takizawa T, Sadeghian H, Sugimoto K, Sakadžić S, Yaseen MA, Ayata C. Neurovascular coupling during optogenetic functional activation: Local and remote stimulus-response characteristics, and uncoupling by spreading depression. J Cereb Blood Flow Metab 2020;40:808-22. [PMID: 31063009 DOI: 10.1177/0271678X19845934] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
17 Magloire V, Cornford J, Lieb A, Kullmann DM, Pavlov I. KCC2 overexpression prevents the paradoxical seizure-promoting action of somatic inhibition. Nat Commun 2019;10:1225. [PMID: 30874549 DOI: 10.1038/s41467-019-08933-4] [Cited by in Crossref: 33] [Cited by in F6Publishing: 37] [Article Influence: 11.0] [Reference Citation Analysis]
18 Sommer AP. Mitochondrial cytochrome c oxidase is not the primary acceptor for near infrared light-it is mitochondrial bound water: the principles of low-level light therapy. Ann Transl Med 2019;7:S13. [PMID: 31032294 DOI: 10.21037/atm.2019.01.43] [Cited by in Crossref: 16] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
19 Richter F, Bauer A, Perl S, Schulz A, Richter A. Optogenetic augmentation of the hypercholinergic endophenotype in DYT1 knock-in mice induced erratic hyperactive movements but not dystonia. EBioMedicine 2019;41:649-58. [PMID: 30819512 DOI: 10.1016/j.ebiom.2019.02.042] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
20 Jáidar O, Carrillo-Reid L, Nakano Y, Lopez-Huerta VG, Hernandez-Cruz A, Bargas J, Garcia-Munoz M, Arbuthnott GW. Synchronized activation of striatal direct and indirect pathways underlies the behavior in unilateral dopamine-depleted mice. Eur J Neurosci 2019;49:1512-28. [PMID: 30633847 DOI: 10.1111/ejn.14344] [Cited by in Crossref: 9] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
21 Cho C, Michailidis V, Lecker I, Collymore C, Hanwell D, Loka M, Danesh M, Pham C, Urban P, Bonin RP, Martin LJ. Evaluating analgesic efficacy and administration route following craniotomy in mice using the grimace scale. Sci Rep 2019;9:359. [PMID: 30674967 DOI: 10.1038/s41598-018-36897-w] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
22 Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018;11:4-31. [PMID: 28260504 DOI: 10.2174/1874467210666170302104053] [Cited by in Crossref: 52] [Cited by in F6Publishing: 57] [Article Influence: 13.0] [Reference Citation Analysis]
23 Ortolani D, Manot-Saillet B, Orduz D, Ortiz FC, Angulo MC. In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups. Front Cell Neurosci 2018;12:477. [PMID: 30574070 DOI: 10.3389/fncel.2018.00477] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
24 Ribeiro EA, Salery M, Scarpa JR, Calipari ES, Hamilton PJ, Ku SM, Kronman H, Purushothaman I, Juarez B, Heshmati M, Doyle M, Lardner C, Burek D, Strat A, Pirpinias S, Mouzon E, Han MH, Neve RL, Bagot RC, Kasarskis A, Koo JW, Nestler EJ. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nat Commun 2018;9:3149. [PMID: 30089879 DOI: 10.1038/s41467-018-05657-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
25 Mattingly M, Weineck K, Costa J, Cooper RL. Hyperpolarization by activation of halorhodopsin results in enhanced synaptic transmission: Neuromuscular junction and CNS circuit. PLoS One 2018;13:e0200107. [PMID: 29969493 DOI: 10.1371/journal.pone.0200107] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
26 Keplinger S, Beiderbeck B, Michalakis S, Biel M, Grothe B, Kunz L. Optogenetic Control of Neural Circuits in the Mongolian Gerbil. Front Cell Neurosci 2018;12:111. [PMID: 29740286 DOI: 10.3389/fncel.2018.00111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
27 Libbrecht S, Hoffman L, Welkenhuysen M, Van den Haute C, Baekelandt V, Braeken D, Haesler S. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. J Neurophysiol 2018;120:149-61. [PMID: 29589813 DOI: 10.1152/jn.00888.2017] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
28 Jiang Z, Rajamanickam S, Justice NJ. Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus. J Neurosci 2018;38:1874-90. [PMID: 29352046 DOI: 10.1523/JNEUROSCI.1492-17.2017] [Cited by in Crossref: 43] [Cited by in F6Publishing: 50] [Article Influence: 10.8] [Reference Citation Analysis]
29 Carpenter F, Burgess N, Barry C. Modulating medial septal cholinergic activity reduces medial entorhinal theta frequency without affecting speed or grid coding. Sci Rep 2017;7:14573. [PMID: 29109512 DOI: 10.1038/s41598-017-15100-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
30 Chan RW, Leong ATL, Ho LC, Gao PP, Wong EC, Dong CM, Wang X, He J, Chan YS, Lim LW, Wu EX. Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity. Proc Natl Acad Sci U S A 2017;114:E6972-81. [PMID: 28760982 DOI: 10.1073/pnas.1703309114] [Cited by in Crossref: 49] [Cited by in F6Publishing: 54] [Article Influence: 9.8] [Reference Citation Analysis]
31 Viollet C, Simon A, Tolle V, Labarthe A, Grouselle D, Loe-Mie Y, Simonneau M, Martel G, Epelbaum J. Somatostatin-IRES-Cre Mice: Between Knockout and Wild-Type? Front Endocrinol (Lausanne) 2017;8:131. [PMID: 28674519 DOI: 10.3389/fendo.2017.00131] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 3.2] [Reference Citation Analysis]
32 Berlin S, Isacoff EY. Synapses in the spotlight with synthetic optogenetics. EMBO Rep 2017;18:677-92. [PMID: 28396573 DOI: 10.15252/embr.201744010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
33 Song G, Poon CS. α2-Adrenergic blockade rescues hypoglossal motor defense against obstructive sleep apnea. JCI Insight 2017;2:e91456. [PMID: 28239660 DOI: 10.1172/jci.insight.91456] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
34 Molokanova E, Mercola M, Savchenko A. Bringing new dimensions to drug discovery screening: impact of cellular stimulation technologies. Drug Discov Today 2017;22:1045-55. [PMID: 28179145 DOI: 10.1016/j.drudis.2017.01.015] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
35 Lam RS, Töpfer FM, Wood PG, Busskamp V, Bamberg E. Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures. PLoS One 2017;12:e0169506. [PMID: 28052116 DOI: 10.1371/journal.pone.0169506] [Cited by in Crossref: 37] [Cited by in F6Publishing: 37] [Article Influence: 7.4] [Reference Citation Analysis]
36 Leong AT, Chan RW, Gao PP, Chan YS, Tsia KK, Yung WH, Wu EX. Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile. Proc Natl Acad Sci U S A 2016;113:E8306-15. [PMID: 27930323 DOI: 10.1073/pnas.1616361113] [Cited by in Crossref: 32] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
37 Fang-Yen C, Alkema MJ, Samuel AD. Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond B Biol Sci 2015;370:20140212. [PMID: 26240427 DOI: 10.1098/rstb.2014.0212] [Cited by in Crossref: 26] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
38 Owald D, Lin S, Waddell S. Light, heat, action: neural control of fruit fly behaviour. Philos Trans R Soc Lond B Biol Sci 2015;370:20140211. [PMID: 26240426 DOI: 10.1098/rstb.2014.0211] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 9.7] [Reference Citation Analysis]
39 Whissell PD, Tohyama S, Martin LJ. The Use of DREADDs to Deconstruct Behavior. Front Genet 2016;7:70. [PMID: 27242888 DOI: 10.3389/fgene.2016.00070] [Cited by in Crossref: 54] [Cited by in F6Publishing: 59] [Article Influence: 9.0] [Reference Citation Analysis]
40 Soper C, Wicker E, Kulick CV, N'Gouemo P, Forcelli PA. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol Dis 2016;87:102-15. [PMID: 26721319 DOI: 10.1016/j.nbd.2015.12.012] [Cited by in Crossref: 43] [Cited by in F6Publishing: 47] [Article Influence: 6.1] [Reference Citation Analysis]
41 Gagnon-Turcotte G, Kisomi AA, Ameli R, Camaro CO, LeChasseur Y, Néron JL, Bareil PB, Fortier P, Bories C, de Koninck Y, Gosselin B. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability. Sensors (Basel) 2015;15:22776-97. [PMID: 26371006 DOI: 10.3390/s150922776] [Cited by in Crossref: 25] [Cited by in F6Publishing: 17] [Article Influence: 3.6] [Reference Citation Analysis]
42 Wu Z, Kim ER, Sun H, Xu Y, Mangieri LR, Li DP, Pan HL, Xu Y, Arenkiel BR, Tong Q. GABAergic projections from lateral hypothalamus to paraventricular hypothalamic nucleus promote feeding. J Neurosci 2015;35:3312-8. [PMID: 25716832 DOI: 10.1523/JNEUROSCI.3720-14.2015] [Cited by in Crossref: 51] [Cited by in F6Publishing: 54] [Article Influence: 7.3] [Reference Citation Analysis]
43 Stahl JS, Thumser ZC, May PJ, Andrade FH, Anderson SR, Dean P. Mechanics of mouse ocular motor plant quantified by optogenetic techniques. J Neurophysiol 2015;114:1455-67. [PMID: 26108953 DOI: 10.1152/jn.00328.2015] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
44 Stubblefield EA, Thompson JA, Felsen G. Optogenetic cholinergic modulation of the mouse superior colliculus in vivo. J Neurophysiol 2015;114:978-88. [PMID: 26019317 DOI: 10.1152/jn.00917.2014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 1.7] [Reference Citation Analysis]
45 Allen BD, Singer AC, Boyden ES. Principles of designing interpretable optogenetic behavior experiments. Learn Mem 2015;22:232-8. [PMID: 25787711 DOI: 10.1101/lm.038026.114] [Cited by in Crossref: 79] [Cited by in F6Publishing: 60] [Article Influence: 11.3] [Reference Citation Analysis]
46 Rossi MA, Calakos N, Yin HH. Spotlight on movement disorders: What optogenetics has to offer. Mov Disord 2015;30:624-31. [PMID: 25777796 DOI: 10.1002/mds.26184] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
47 Zhu Y, Feng B, Schwartz ES, Gebhart GF, Prescott SA. Novel method to assess axonal excitability using channelrhodopsin-based photoactivation. J Neurophysiol 2015;113:2242-9. [PMID: 25609112 DOI: 10.1152/jn.00982.2014] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 1.7] [Reference Citation Analysis]
48 El-Boustani S, Sur M. Response-dependent dynamics of cell-specific inhibition in cortical networks in vivo. Nat Commun 2014;5:5689. [PMID: 25504329 DOI: 10.1038/ncomms6689] [Cited by in Crossref: 32] [Cited by in F6Publishing: 35] [Article Influence: 4.0] [Reference Citation Analysis]
49 Murphey DK, Herman AM, Arenkiel BR. Dissecting inhibitory brain circuits with genetically-targeted technologies. Front Neural Circuits 2014;8:124. [PMID: 25368555 DOI: 10.3389/fncir.2014.00124] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
50 Arrigoni E, Saper CB. What optogenetic stimulation is telling us (and failing to tell us) about fast neurotransmitters and neuromodulators in brain circuits for wake-sleep regulation. Curr Opin Neurobiol 2014;29:165-71. [PMID: 25064179 DOI: 10.1016/j.conb.2014.07.016] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 4.1] [Reference Citation Analysis]
51 Rothermel M, Carey RM, Puche A, Shipley MT, Wachowiak M. Cholinergic inputs from Basal forebrain add an excitatory bias to odor coding in the olfactory bulb. J Neurosci 2014;34:4654-64. [PMID: 24672011 DOI: 10.1523/JNEUROSCI.5026-13.2014] [Cited by in Crossref: 75] [Cited by in F6Publishing: 70] [Article Influence: 9.4] [Reference Citation Analysis]
52 Berndt A, Lee SY, Ramakrishnan C, Deisseroth K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 2014;344:420-4. [PMID: 24763591 DOI: 10.1126/science.1252367] [Cited by in Crossref: 260] [Cited by in F6Publishing: 224] [Article Influence: 32.5] [Reference Citation Analysis]