BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Shi Y, van der Meel R, Chen X, Lammers T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020;10:7921-4. [PMID: 32685029 DOI: 10.7150/thno.49577] [Cited by in Crossref: 190] [Cited by in F6Publishing: 149] [Article Influence: 95.0] [Reference Citation Analysis]
Number Citing Articles
1 Kadkhoda J, Tarighatnia A, Tohidkia MR, Nader ND, Aghanejad A. Photothermal therapy-mediated autophagy in breast cancer treatment: Progress and trends. Life Sciences 2022;298:120499. [DOI: 10.1016/j.lfs.2022.120499] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Quintana JM, Arboleda D, Hu H, Scott E, Luthria G, Pai S, Parangi S, Weissleder R, Miller MA. Radiation Cleaved Drug-Conjugate Linkers Enable Local Payload Release. Bioconjug Chem 2022. [PMID: 35833631 DOI: 10.1021/acs.bioconjchem.2c00174] [Reference Citation Analysis]
3 Dacoba TG, Anthiya S, Berrecoso G, Fernández‐mariño I, Fernández‐varela C, Crecente‐campo J, Teijeiro‐osorio D, Torres Andón F, Alonso MJ. Nano‐Oncologicals: A Tortoise Trail Reaching New Avenues. Adv Funct Mater 2021;31:2009860. [DOI: 10.1002/adfm.202009860] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
4 Higashi Y, Matsumoto K, Saitoh H, Shiro A, Ma Y, Laird M, Chinnathambi S, Birault A, Doan TLH, Yasuda R, Tajima T, Kawachi T, Tamanoi F. Iodine containing porous organosilica nanoparticles trigger tumor spheroids destruction upon monochromatic X-ray irradiation: DNA breaks and K-edge energy X-ray. Sci Rep 2021;11:14192. [PMID: 34262055 DOI: 10.1038/s41598-021-93429-9] [Reference Citation Analysis]
5 Cuda TJ, He Y, Kryza T, Khan T, Tse BW, Sokolowski KA, Liu C, Lyons N, Gough M, Snell CE, Wyld DK, Rose S, Riddell AD, Stevenson ARL, Thomas PA, Clark DA, Puttick S, Hooper JD. Preclinical Molecular PET-CT Imaging Targeting CDCP1 in Colorectal Cancer. Contrast Media Mol Imaging 2021;2021:3153278. [PMID: 34621145 DOI: 10.1155/2021/3153278] [Reference Citation Analysis]
6 Choi J, Sun IC, Sook Hwang H, Yeol Yoon H, Kim K. Light-triggered photodynamic nanomedicines for overcoming localized therapeutic efficacy in cancer treatment. Adv Drug Deliv Rev 2022;186:114344. [PMID: 35580813 DOI: 10.1016/j.addr.2022.114344] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Saeed M, Chen F, Ye J, Shi Y, Lammers T, De Geest BG, Xu ZP, Yu H. From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. Adv Mater 2021;33:e2008094. [PMID: 34048101 DOI: 10.1002/adma.202008094] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 18.0] [Reference Citation Analysis]
8 Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št Astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer-Doxorubicin Complexes. Biomacromolecules 2021. [PMID: 34928129 DOI: 10.1021/acs.biomac.1c01264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Shinoda K, Suganami A, Moriya Y, Yamashita M, Tanaka T, Suzuki AS, Suito H, Akutsu Y, Saito K, Shinozaki Y, Isojima K, Nakamura N, Miyauchi Y, Shirasawa H, Matsubara H, Okamoto Y, Nakayama T, Tamura Y. Indocyanine green conjugated phototheranostic nanoparticle for photodiagnosis and photodynamic reaciton. Photodiagnosis Photodyn Ther 2022;:103041. [PMID: 35914696 DOI: 10.1016/j.pdpdt.2022.103041] [Reference Citation Analysis]
10 Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021;22:9376. [PMID: 34502287 DOI: 10.3390/ijms22179376] [Reference Citation Analysis]
11 Sachdeva V, Monga A, Vashisht R, Singh D, Singh A, Bedi N. Iron Oxide Nanoparticles: The precise strategy for targeted delivery of genes, oligonucleotides and peptides in cancer therapy. Journal of Drug Delivery Science and Technology 2022;74:103585. [DOI: 10.1016/j.jddst.2022.103585] [Reference Citation Analysis]
12 Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022:S0168-3659(22)00189-4. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Reference Citation Analysis]
13 Grin M, Suvorov N, Ostroverkhov P, Pogorilyy V, Kirin N, Popov A, Sazonova A, Filonenko E. Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys Rev. [DOI: 10.1007/s12551-022-00962-6] [Reference Citation Analysis]
14 Hernández Becerra E, Quinchia J, Castro C, Orozco J. Light-Triggered Polymersome-Based Anticancer Therapeutics Delivery. Nanomaterials 2022;12:836. [DOI: 10.3390/nano12050836] [Reference Citation Analysis]
15 Kiran P, Khan A, Neekhra S, Pallod S, Srivastava R. Nanohybrids as Protein-Polymer Conjugate Multimodal Therapeutics. Front Med Technol 2021;3:676025. [PMID: 35047929 DOI: 10.3389/fmedt.2021.676025] [Reference Citation Analysis]
16 Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022;14:622. [PMID: 35158888 DOI: 10.3390/cancers14030622] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
17 Mohd-zahid MH, Zulkifli SN, Che Abdullah CA, Lim J, Fakurazi S, Wong KK, Zakaria AD, Ismail N, Uskoković V, Mohamud R, Z. A I. Gold nanoparticles conjugated with anti-CD133 monoclonal antibody and 5-fluorouracil chemotherapeutic agent as nanocarriers for cancer cell targeting. RSC Adv 2021;11:16131-41. [DOI: 10.1039/d1ra01093j] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
18 Acharya S, Praveena J, Guru BR. In Vitro Studies of Prednisolone Loaded PLGA Nanoparticles-Surface Functionalized With Folic Acid on Glioma and Macrophage Cell Lines. Pharm Sci 2021;27:407-17. [DOI: 10.34172/ps.2020.94] [Reference Citation Analysis]
19 Serwer P, Wright ET, De La Chapa J, Gonzales CB. Basics for Improved Use of Phages for Therapy. Antibiotics (Basel) 2021;10:723. [PMID: 34208477 DOI: 10.3390/antibiotics10060723] [Reference Citation Analysis]
20 Li SS, Zhang CM, Wu JD, Liu C, Liu ZP. A branched small molecule-drug conjugate nanomedicine strategy for the targeted HCC chemotherapy. Eur J Med Chem 2022;228:114037. [PMID: 34883290 DOI: 10.1016/j.ejmech.2021.114037] [Reference Citation Analysis]
21 Komolibus K, Fisher C, Swartling J, Svanberg S, Svanberg K, Andersson-Engels S. Perspectives on interstitial photodynamic therapy for malignant tumors. J Biomed Opt 2021;26. [PMID: 34302323 DOI: 10.1117/1.JBO.26.7.070604] [Reference Citation Analysis]
22 Paun RA, Dumut DC, Centorame A, Thuraisingam T, Hajduch M, Mistrik M, Dzubak P, De Sanctis JB, Radzioch D, Tabrizian M. One-Step Synthesis of Nanoliposomal Copper Diethyldithiocarbamate and Its Assessment for Cancer Therapy. Pharmaceutics 2022;14:640. [DOI: 10.3390/pharmaceutics14030640] [Reference Citation Analysis]
23 López Mendoza CM, Alcántara Quintana LE. Smart Drug Delivery Strategies for Cancer Therapy. Front Nanotechnol 2022;3:753766. [DOI: 10.3389/fnano.2021.753766] [Reference Citation Analysis]
24 Zhu Y, Zhao T, Liu M, Wang S, Liu S, Yang Y, Yang Y, Nan Y, Huang Q, Ai K. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today 2022;42:101358. [DOI: 10.1016/j.nantod.2021.101358] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 16.0] [Reference Citation Analysis]
25 Qin J, Yang X, Lv C, Li Y, Liu K, Zang J, Yang X, Dong L, Shan C. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Materials & Design 2021;210:110091. [DOI: 10.1016/j.matdes.2021.110091] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
26 Kumar K, Rani V, Mishra M, Chawla R. New paradigm in combination therapy of siRNA with chemotherapeutic drugs for effective cancer therapy. Current Research in Pharmacology and Drug Discovery 2022. [DOI: 10.1016/j.crphar.2022.100103] [Reference Citation Analysis]
27 Athanasiou V, Stavroulaki D, Arfara F, Kampras D, Kleideris I, Roumelioti N, Fragouli PG, Patias G, Haddleton D, Iatrou H. Gold Nanoparticles and Nanoshells Embedded as Core–Shell Architectures in Hybrid Poly( l -Histidine)-Containing Polymers for Photothermal Therapies. ACS Appl Nano Mater 2021;4:14217-30. [DOI: 10.1021/acsanm.1c03769] [Reference Citation Analysis]
28 Lacerda S, Zhang W, T M de Rosales R, Da Silva I, Sobilo J, Lerondel S, Tóth É, Djanashvili K. On the Versatility of Nanozeolite Linde Type L for Biomedical Applications: Zirconium-89 Radiolabeling and In Vivo Positron Emission Tomography Study. ACS Appl Mater Interfaces 2022. [PMID: 35830285 DOI: 10.1021/acsami.2c03841] [Reference Citation Analysis]
29 Sultan MH, Moni SS, Madkhali OA, Bakkari MA, Alshahrani S, Alqahtani SS, Alhakamy NA, Mohan S, Ghazwani M, Bukhary HA, Almoshari Y, Salawi A, Alshamrani M. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci Rep 2022;12:468. [PMID: 35013493 DOI: 10.1038/s41598-021-04427-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Yang T, Hu Y, Miao J, Chen J, Liu J, Cheng Y, Gao X. A BRD4 PROTAC nanodrug for glioma therapy via the intervention of tumor cells proliferation, apoptosis and M2 macrophages polarization. Acta Pharmaceutica Sinica B 2022;12:2658-71. [DOI: 10.1016/j.apsb.2022.02.009] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Cox A, Lim SA, Chung EJ. Strategies to deliver RNA by nanoparticles for therapeutic potential. Mol Aspects Med 2021;:100991. [PMID: 34366123 DOI: 10.1016/j.mam.2021.100991] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. Adv Therap 2021;4:2000285. [DOI: 10.1002/adtp.202000285] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Comini LR, Alasino RV, Leonhard V, Bierbrauer KL, Beltramo DM. Self-assembled micelles of the (lipo) glycopeptides, teicoplanin, as taxane nanocarriers. Nanotechnology 2021;32. [PMID: 34330111 DOI: 10.1088/1361-6528/ac1979] [Reference Citation Analysis]
34 Silva F, D'Onofrio A, Mendes C, Pinto C, Marques A, Campello MPC, Oliveira MC, Raposinho P, Belchior A, Di Maria S, Marques F, Cruz C, Carvalho J, Paulo A. Radiolabeled Gold Nanoseeds Decorated with Substance P Peptides: Synthesis, Characterization and In Vitro Evaluation in Glioblastoma Cellular Models. Int J Mol Sci 2022;23:617. [PMID: 35054798 DOI: 10.3390/ijms23020617] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Faraji N, Esrafili A, Esfandiari B, Abednezhad A, Naghizadeh M, Arasteh J. Synthesis of pH-sensitive hyaluronic acid nanogels loaded with paclitaxel and interferon gamma: Characterization and effect on the A549 lung carcinoma cell line. Colloids Surf B Biointerfaces 2021;205:111845. [PMID: 34015733 DOI: 10.1016/j.colsurfb.2021.111845] [Reference Citation Analysis]
36 Liu Y, Zhao H, Gao N, Yang C, Zhang R, Zhang X. An efficient FRET based theranostic nanoprobe for hyaluronidase detection and cancer therapy in vitro. Sensors and Actuators B: Chemical 2021;344:130201. [DOI: 10.1016/j.snb.2021.130201] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
37 Ortiz-casas B, Galdámez-martínez A, Gutiérrez-flores J, Baca Ibañez A, Kumar Panda P, Santana G, de la Vega HA, Suar M, Gutiérrez Rodelo C, Kaushik A, Kumar Mishra Y, Dutt A. Bio-acceptable 0D and 1D ZnO nanostructures for cancer diagnostics and treatment. Materials Today 2021;50:533-69. [DOI: 10.1016/j.mattod.2021.07.025] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
38 Chan Y, Singh SK, Gulati M, Wadhwa S, Prasher P, Kumar D, Kumar AP, Gupta G, Kuppusamy G, Haghi M, George Oliver BG, Adams J, Chellappan DK, Dua K. Advances and applications of monoolein as a novel nanomaterial in mitigating chronic lung diseases. Journal of Drug Delivery Science and Technology 2022;74:103541. [DOI: 10.1016/j.jddst.2022.103541] [Reference Citation Analysis]
39 Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021;294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 16.0] [Reference Citation Analysis]
40 Ngo DN, Ho VTTX, Kim G, Song MS, Kim MR, Choo J, Joo SW, Lee SY. Raman Thermometry Nanopipettes in Cancer Photothermal Therapy. Anal Chem 2022. [PMID: 35435669 DOI: 10.1021/acs.analchem.1c04452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Mehrabian A, Mashreghi M, Dadpour S, Badiee A, Arabi L, Hoda Alavizadeh S, Alia Moosavian S, Reza Jaafari M. Nanocarriers Call the Last Shot in the Treatment of Brain Cancers. Technol Cancer Res Treat 2022;21:15330338221080974. [PMID: 35253549 DOI: 10.1177/15330338221080974] [Reference Citation Analysis]
42 Marques A, Belchior A, Silva F, Marques F, Campello MPC, Pinheiro T, Santos P, Santos L, Matos APA, Paulo A. Dose Rate Effects on the Selective Radiosensitization of Prostate Cells by GRPR-Targeted Gold Nanoparticles. Int J Mol Sci 2022;23:5279. [PMID: 35563666 DOI: 10.3390/ijms23095279] [Reference Citation Analysis]
43 Parakhonskiy BV, Shilyagina NY, Gusliakova ОI, Volovetskiy AB, Kostyuk AB, Balalaeva IV, Klapshina LG, Lermontova SA, Tolmachev V, Orlova A, Gorin DA, Sukhorukov GB, Zvyagin AV. A method of drug delivery to tumors based on rapidly biodegradable drug-loaded containers. Applied Materials Today 2021;25:101199. [DOI: 10.1016/j.apmt.2021.101199] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
44 Wu J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J Pers Med 2021;11:771. [PMID: 34442415 DOI: 10.3390/jpm11080771] [Cited by in Crossref: 3] [Article Influence: 3.0] [Reference Citation Analysis]
45 Alshehri S, Imam SS, Rizwanullah M, Akhter S, Mahdi W, Kazi M, Ahmad J. Progress of Cancer Nanotechnology as Diagnostics, Therapeutics, and Theranostics Nanomedicine: Preclinical Promise and Translational Challenges. Pharmaceutics 2020;13:E24. [PMID: 33374391 DOI: 10.3390/pharmaceutics13010024] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
46 Ali N, Srivastava N. Recent Advancements for the Management of Pancreatic Cancer: Current Insights. CCTR 2021;17:267-82. [DOI: 10.2174/1573394717666210625153256] [Reference Citation Analysis]
47 Tao Y, Lan X, Zhang Y, Xiao Y, Wang J, Chen H, Liu L, Liang XJ, Guo W. Navigations of the targeting pathway of nanomedicines towards tumor. Expert Opin Drug Deliv 2022. [PMID: 35929954 DOI: 10.1080/17425247.2022.2110064] [Reference Citation Analysis]
48 Abbasi H, Rahbar N, Kouchak M, Khalil Dezfuli P, Handali S. Functionalized liposomes as drug nanocarriers for active targeted cancer therapy: a systematic review. J Liposome Res 2021;:1-16. [PMID: 33729077 DOI: 10.1080/08982104.2021.1903035] [Reference Citation Analysis]
49 Ibarra LE. Development of nanosystems for active tumor targeting in photodynamic therapy. Ther Deliv 2021. [PMID: 34842453 DOI: 10.4155/tde-2021-0083] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Bayram NN, Ulu GT, Topuzoğulları M, Baran Y, Dinçer İşoğlu S. HER2-Targeted, Degradable Core Cross-Linked Micelles for Specific and Dual pH-Sensitive DOX Release. Macromol Biosci 2021;:e2100375. [PMID: 34708562 DOI: 10.1002/mabi.202100375] [Reference Citation Analysis]
51 Nguyen‐huu A, Le NTT, Yen PND, Ching YC, Nguyen DH. Self‐assembly of methoxy poly(ethylene glycol)‐cholesterol micelles for controlled quercetin delivery with toxicity test in Danio rerio model. J of Applied Polymer Sci. [DOI: 10.1002/app.52855] [Reference Citation Analysis]
52 Montaseri H, Kruger CA, Abrahamse H. Targeted Photodynamic Therapy Using Alloyed Nanoparticle-Conjugated 5-Aminolevulinic Acid for Breast Cancer. Pharmaceutics 2021;13:1375. [PMID: 34575450 DOI: 10.3390/pharmaceutics13091375] [Reference Citation Analysis]
53 Sharma N, Bietar K, Stochaj U. Targeting nanoparticles to malignant tumors. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2022. [DOI: 10.1016/j.bbcan.2022.188703] [Reference Citation Analysis]
54 Vetter VC, Wagner E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control Release 2022:S0168-3659(22)00207-3. [PMID: 35436520 DOI: 10.1016/j.jconrel.2022.04.013] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 Chung SW, Xie Y, Suk JS. Overcoming physical stromal barriers to cancer immunotherapy. Drug Deliv Transl Res 2021. [PMID: 34351575 DOI: 10.1007/s13346-021-01036-y] [Reference Citation Analysis]
56 Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J Control Release 2021;332:312-36. [PMID: 33652113 DOI: 10.1016/j.jconrel.2021.02.031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 11] [Article Influence: 14.0] [Reference Citation Analysis]
57 Curcio M, Paolì A, Cirillo G, Di Pietro S, Forestiero M, Giordano F, Mauro L, Amantea D, Di Bussolo V, Nicoletta FP, Iemma F. Combining Dextran Conjugates with Stimuli-Responsive and Folate-Targeting Activity: A New Class of Multifunctional Nanoparticles for Cancer Therapy. Nanomaterials (Basel) 2021;11:1108. [PMID: 33922934 DOI: 10.3390/nano11051108] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
58 Sankaranarayanan SA, Thomas A, Revi N, Ramakrishna B, Rengan AK. Iron oxide nanoparticles for theranostic applications - Recent advances. Journal of Drug Delivery Science and Technology 2022;70:103196. [DOI: 10.1016/j.jddst.2022.103196] [Reference Citation Analysis]
59 van Dam MA, Vuijk FA, Stibbe JA, Houvast RD, Luelmo SAC, Crobach S, Shahbazi Feshtali S, de Geus-Oei LF, Bonsing BA, Sier CFM, Kuppen PJK, Swijnenburg RJ, Windhorst AD, Burggraaf J, Vahrmeijer AL, Mieog JSD. Overview and Future Perspectives on Tumor-Targeted Positron Emission Tomography and Fluorescence Imaging of Pancreatic Cancer in the Era of Neoadjuvant Therapy. Cancers (Basel) 2021;13:6088. [PMID: 34885196 DOI: 10.3390/cancers13236088] [Reference Citation Analysis]
60 Li Z, Fan Q, Yin Y. Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chem Rev 2021. [PMID: 34747588 DOI: 10.1021/acs.chemrev.1c00482] [Reference Citation Analysis]
61 Sabu A, Lin J, Doong R, Huang Y, Chiu H. Prospects of an engineered tumor-targeted nanotheranostic platform based on NIR-responsive upconversion nanoparticles. Mater Adv 2021;2:7101-17. [DOI: 10.1039/d1ma00563d] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
62 Kovács D, Igaz N, Gopisetty MK, Kiricsi M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? Int J Mol Sci 2022;23:839. [PMID: 35055024 DOI: 10.3390/ijms23020839] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
63 Huang WK, Yeh CN. The Emerging Role of MicroRNAs in Regulating the Drug Response of Cholangiocarcinoma. Biomolecules. 2020;10. [PMID: 33007962 DOI: 10.3390/biom10101396] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
64 Keerthiga R, Zhao Z, Pei D, Fu A. Photodynamic Nanophotosensitizers: Promising Materials for Tumor Theranostics. ACS Biomater Sci Eng 2020;6:5474-85. [PMID: 33320544 DOI: 10.1021/acsbiomaterials.0c01058] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
65 Zhang R, Huang X, Chen C, Kwok RT, Lam JW, Tang BZ. AIEgen for cancer discrimination. Materials Science and Engineering: R: Reports 2021;146:100649. [DOI: 10.1016/j.mser.2021.100649] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
66 Nayak A, Warrier NM, Kumar P. Cancer Stem Cells and the Tumor Microenvironment: Targeting the Critical Crosstalk through Nanocarrier Systems. Stem Cell Rev Rep 2022. [PMID: 35876959 DOI: 10.1007/s12015-022-10426-9] [Reference Citation Analysis]
67 Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021;16:032005. [DOI: 10.1088/1748-605x/abe35a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
68 De Silva L, Fu JY, Htar TT, Wan Kamal WHB, Kasbollah A, Muniyandy S, Chuah LH. Biodistribution Study of Niosomes in Tumor-Implanted BALB/C Mice Using Scintigraphic Imaging. Front Pharmacol 2021;12:778396. [PMID: 35069200 DOI: 10.3389/fphar.2021.778396] [Reference Citation Analysis]
69 Katekar R, Singh P, Garg R, Verma S, Gayen JR. Emerging nanotechnology based combination therapies of taxanes for multiple drug-resistant cancers. Pharm Dev Technol 2021;:1-13. [PMID: 34806547 DOI: 10.1080/10837450.2021.2009861] [Reference Citation Analysis]
70 Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers (Basel) 2021;13:2680. [PMID: 34072348 DOI: 10.3390/cancers13112680] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
71 Roma-Rodrigues C, Raposo LR, Valente R, Fernandes AR, Baptista PV. Combined cancer therapeutics-Tackling the complexity of the tumor microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021;13:e1704. [PMID: 33565269 DOI: 10.1002/wnan.1704] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
72 Amin M, Mansourian M, Burgers PC, Amin B, Jaafari MR, Ten Hagen TLM. Increased Targeting Area in Tumors by Dual-Ligand Modification of Liposomes with RGD and TAT Peptides. Pharmaceutics 2022;14:458. [PMID: 35214190 DOI: 10.3390/pharmaceutics14020458] [Reference Citation Analysis]
73 Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021;10:2752. [PMID: 34685734 DOI: 10.3390/cells10102752] [Reference Citation Analysis]
74 Lynch MJ, Gobbo OL. Advances in Non-Animal Testing Approaches towards Accelerated Clinical Translation of Novel Nanotheranostic Therapeutics for Central Nervous System Disorders. Nanomaterials (Basel) 2021;11:2632. [PMID: 34685073 DOI: 10.3390/nano11102632] [Reference Citation Analysis]
75 Carregal-Romero S, Miguel-Coello AB, Martínez-Parra L, Martí-Mateo Y, Hernansanz-Agustín P, Fernández-Afonso Y, Plaza-García S, Gutiérrez L, Muñoz-Hernández MDM, Carrillo-Romero J, Piñol-Cancer M, Lecante P, Blasco-Iturri Z, Fadón L, Almansa-García AC, Möller M, Otaegui D, Enríquez JA, Groult H, Ruíz-Cabello J. Ultrasmall Manganese Ferrites for In Vivo Catalase Mimicking Activity and Multimodal Bioimaging. Small 2022;:e2106570. [PMID: 35263020 DOI: 10.1002/smll.202106570] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
76 Wang S, Fontana F, Shahbazi MA, Santos HA. Acetalated dextran based nano- and microparticles: synthesis, fabrication, and therapeutic applications. Chem Commun (Camb) 2021;57:4212-29. [PMID: 33913978 DOI: 10.1039/d1cc00811k] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
77 Niculescu A, Grumezescu AM. Photodynamic Therapy—An Up-to-Date Review. Applied Sciences 2021;11:3626. [DOI: 10.3390/app11083626] [Cited by in Crossref: 26] [Cited by in F6Publishing: 9] [Article Influence: 26.0] [Reference Citation Analysis]
78 Yan H, Du X, Wang R, Zhai G. Progress in the study of D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) reversing multidrug resistance. Colloids Surf B Biointerfaces 2021;205:111914. [PMID: 34130211 DOI: 10.1016/j.colsurfb.2021.111914] [Reference Citation Analysis]
79 Pavithra CL, Sankaranarayanan SA, Pebam M, Janardhana RKSK, Singh A, Rengan AK, Dey SR. Primary attempt towards bioapplicability of one-dimensional high entropy alloys. Materials Letters 2022;312:131659. [DOI: 10.1016/j.matlet.2022.131659] [Reference Citation Analysis]
80 Heinrich MA, Mostafa AMRH, Morton JP, Hawinkels LJAC, Prakash J. Translating complexity and heterogeneity of pancreatic tumor: 3D in vitro to in vivo models. Adv Drug Deliv Rev 2021;174:265-93. [PMID: 33895214 DOI: 10.1016/j.addr.2021.04.018] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
81 Boix-Montesinos P, Soriano-Teruel PM, Armiñán A, Orzáez M, Vicent MJ. The past, present, and future of breast cancer models for nanomedicine development. Adv Drug Deliv Rev 2021;173:306-30. [PMID: 33798642 DOI: 10.1016/j.addr.2021.03.018] [Cited by in Crossref: 19] [Cited by in F6Publishing: 15] [Article Influence: 19.0] [Reference Citation Analysis]
82 Maria Pincela Lins P, Ribovski L, Corsi Antonio L, Altei WF, Selistre-de-araújo HS, Cancino-bernardi J, Zucolotto V. Comparing Extracellular Vesicles and Cell Membranes as Biocompatible Coatings for Gold Nanorods: Implications for Targeted Theranostics. European Journal of Pharmaceutics and Biopharmaceutics 2022. [DOI: 10.1016/j.ejpb.2022.05.018] [Reference Citation Analysis]
83 Zhang Z, Huang Q, Yu L, Zhu D, Li Y, Xue Z, Hua Z, Luo X, Song Z, Lu C, Zhao T, Liu Y. The Role of miRNA in Tumor Immune Escape and miRNA-Based Therapeutic Strategies. Front Immunol 2022;12:807895. [DOI: 10.3389/fimmu.2021.807895] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
84 Bhattacharjee S. Craft of Co-encapsulation in Nanomedicine: A Struggle To Achieve Synergy through Reciprocity. ACS Pharmacol Transl Sci 2022;5:278-98. [PMID: 35592431 DOI: 10.1021/acsptsci.2c00033] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
85 Parodi A, Kostyushev D, Brezgin S, Kostyusheva A, Borodina T, Akasov R, Frolova A, Chulanov V, Zamyatnin AA. Biomimetic approaches for targeting tumor inflammation. Seminars in Cancer Biology 2022. [DOI: 10.1016/j.semcancer.2022.04.007] [Reference Citation Analysis]
86 Eskandari Z, Bahadori F, Yenigun VB, Demiray M, Eroğlu MS, Kocyigit A, Oner ET. Levan enhanced the NF-κB suppression activity of an oral nano PLGA-curcumin formulation in breast cancer treatment. Int J Biol Macromol 2021;189:223-31. [PMID: 34419542 DOI: 10.1016/j.ijbiomac.2021.08.115] [Reference Citation Analysis]
87 Cao S, Lin C, Li X, Liang Y, Saw PE. TME-Responsive Multistage Nanoplatform for siRNA Delivery and Effective Cancer Therapy. Int J Nanomedicine 2021;16:5909-21. [PMID: 34475756 DOI: 10.2147/IJN.S322901] [Reference Citation Analysis]
88 Souri M, Soltani M, Kashkooli FM, Shahvandi MK, Chiani M, Shariati FS, Mehrabi MR, Munn LL. Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100208] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
89 Ma K, Shi J, Pei Y, Pei Z. A carrier-free supramolecular nanoprodrug based on lactose-functionalized dimeric camptothecin via self-assembly in water for targeted and fluorescence imaging-guided chemo-photodynamic therapy. J Colloid Interface Sci 2022;609:353-63. [PMID: 34902672 DOI: 10.1016/j.jcis.2021.12.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
90 Shahriari M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Self-targeted polymersomal co-formulation of doxorubicin, camptothecin and FOXM1 aptamer for efficient treatment of non-small cell lung cancer. J Control Release 2021;335:369-88. [PMID: 34058270 DOI: 10.1016/j.jconrel.2021.05.039] [Reference Citation Analysis]
91 Lee YH, Kuo PW, Chen CJ, Sue CJ, Hsu YF, Pan MC. Indocyanine Green-Camptothecin Co-Loaded Perfluorocarbon Double-Layer Nanocomposite: A Versatile Nanotheranostics for Photochemotherapy and FDOT Diagnosis of Breast Cancer. Pharmaceutics 2021;13:1499. [PMID: 34575572 DOI: 10.3390/pharmaceutics13091499] [Reference Citation Analysis]
92 Lafuente-Gómez N, Milán-Rois P, García-Soriano D, Luengo Y, Cordani M, Alarcón-Iniesta H, Salas G, Somoza Á. Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers (Basel) 2021;13:4095. [PMID: 34439250 DOI: 10.3390/cancers13164095] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
93 Gomes ER, Franco MS. Combining Nanocarrier-Assisted Delivery of Molecules and Radiotherapy. Pharmaceutics 2022;14:105. [PMID: 35057001 DOI: 10.3390/pharmaceutics14010105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
94 Bakare OO, Gokul A, Wu R, Niekerk LA, Klein A, Keyster M. Biomedical Relevance of Novel Anticancer Peptides in the Sensitive Treatment of Cancer. Biomolecules 2021;11:1120. [PMID: 34439786 DOI: 10.3390/biom11081120] [Reference Citation Analysis]
95 King JL, Benhabbour SR. Glioblastoma Multiforme-A Look at the Past and a Glance at the Future. Pharmaceutics 2021;13:1053. [PMID: 34371744 DOI: 10.3390/pharmaceutics13071053] [Reference Citation Analysis]
96 Deng B, Ma B, Ma Y, Cao P, Leng X, Huang P, Zhao Y, Ji T, Lu X, Liu L. Doxorubicin and CpG loaded liposomal spherical nucleic acid for enhanced Cancer treatment. J Nanobiotechnology 2022;20:140. [PMID: 35303868 DOI: 10.1186/s12951-022-01353-5] [Reference Citation Analysis]
97 Chen Z, Wu Q, Guo W, Niu M, Tan L, Wen N, Zhao L, Fu C, Yu J, Ren X, Liang P, Meng X. Nanoengineered biomimetic Cu-based nanoparticles for multifunational and efficient tumor treatment. Biomaterials 2021;276:121016. [PMID: 34274778 DOI: 10.1016/j.biomaterials.2021.121016] [Reference Citation Analysis]
98 Zhang L, Kong L, He SY, Liu XZ, Liu Y, Zang J, Ju RJ, Li XT. The anti-ovarian cancer effect of RPV modified paclitaxel plus schisandra B liposomes in SK-OV-3 cells and tumor-bearing mice. Life Sci 2021;285:120013. [PMID: 34614418 DOI: 10.1016/j.lfs.2021.120013] [Reference Citation Analysis]
99 Ma G, Severic M, Barker M, Pereira S, Ruiz A, Cheung CCL, Al-Jamal WT. Dually targeted bioinspired nanovesicle delays advanced prostate cancer tumour growth in vivo. Acta Biomater 2021;134:559-75. [PMID: 34274531 DOI: 10.1016/j.actbio.2021.07.021] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
100 Milligan JJ, Saha S. A Nanoparticle's Journey to the Tumor: Strategies to Overcome First-Pass Metabolism and Their Limitations. Cancers (Basel) 2022;14:1741. [PMID: 35406513 DOI: 10.3390/cancers14071741] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
101 Ombredane AS, Silva VRP, Andrade LR, Pinheiro WO, Simonelly M, Oliveira JV, Pinheiro AC, Gonçalves GF, Felice GJ, Garcia MP, Campos PM, Luz GVS, Joanitti GA. In Vivo Efficacy and Toxicity of Curcumin Nanoparticles in Breast Cancer Treatment: A Systematic Review. Front Oncol 2021;11:612903. [PMID: 33767985 DOI: 10.3389/fonc.2021.612903] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
102 Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022;14:2473. [PMID: 35626078 DOI: 10.3390/cancers14102473] [Reference Citation Analysis]
103 Silva F, Cabral Campello MP, Paulo A. Radiolabeled Gold Nanoparticles for Imaging and Therapy of Cancer. Materials (Basel) 2020;14:E4. [PMID: 33375074 DOI: 10.3390/ma14010004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
104 Guan Q, Wang M. Core-Shell Structured Theranostics. Nano LIFE 2021;11:2141004. [DOI: 10.1142/s179398442141004x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
105 Lafuente-Gómez N, Latorre A, Milán-Rois P, Rodriguez Diaz C, Somoza Á. Stimuli-responsive nanomaterials for cancer treatment: boundaries, opportunities and applications. Chem Commun (Camb) 2021;57:13662-77. [PMID: 34874370 DOI: 10.1039/d1cc05056g] [Reference Citation Analysis]
106 Huang D, Valerie K, Yang H. Clickable biocompatible brush polymers as a versatile platform toward development of multifunctional drug delivery vehicles. Reactive and Functional Polymers 2022;170:105147. [DOI: 10.1016/j.reactfunctpolym.2021.105147] [Reference Citation Analysis]
107 Wang C, Li Y, Yang W, Zhou L, Wei S. Nanozyme with Robust Catalase Activity by Multiple Mechanisms and Its Application for Hypoxic Tumor Treatment. Adv Healthc Mater 2021;10:e2100601. [PMID: 34390206 DOI: 10.1002/adhm.202100601] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 6.0] [Reference Citation Analysis]
108 Kučas S, Momkauskaitė A, Kynienė A, Masys Š, Jonauskas V. Evaluation of radiative and Auger electron emission following K-shell vacancy creation in iodine. Journal of Quantitative Spectroscopy and Radiative Transfer 2022. [DOI: 10.1016/j.jqsrt.2022.108249] [Reference Citation Analysis]
109 Joshi U, Filipczak N, Khan MM, Attia SA, Torchilin V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. International Journal of Pharmaceutics 2020;590:119915. [DOI: 10.1016/j.ijpharm.2020.119915] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
110 Filipczak N, Joshi U, Attia SA, Berger Fridman I, Cohen S, Konry T, Torchilin V. Hypoxia-sensitive drug delivery to tumors. J Control Release 2021;341:431-42. [PMID: 34838607 DOI: 10.1016/j.jconrel.2021.11.034] [Reference Citation Analysis]
111 Jindal A, Sarkar S, Alam A. Nanomaterials-Mediated Immunomodulation for Cancer Therapeutics. Front Chem 2021;9:629635. [PMID: 33708759 DOI: 10.3389/fchem.2021.629635] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
112 Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. Adv Mater 2021;33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 19.0] [Reference Citation Analysis]
113 Saraswat A, Vemana HP, Dukhande VV, Patel K. Galactose-decorated liver tumor-specific nanoliposomes incorporating selective BRD4-targeted PROTAC for hepatocellular carcinoma therapy. Heliyon 2022;8:e08702. [PMID: 35036599 DOI: 10.1016/j.heliyon.2021.e08702] [Reference Citation Analysis]
114 Uskoković V. Nanomedicine for the poor: a lost cause or an idea whose time has yet to come? Nanomedicine (Lond) 2021;16:1203-18. [PMID: 33988035 DOI: 10.2217/nnm-2021-0024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
115 Pariente A, Peled E, Zlotver I, Sosnik A. Hybrid amorphous TiO2/polymer nanomaterials trigger apoptosis of pediatric cancer cells upon ultrasound irradiation. Materials Today Chemistry 2021;22:100613. [DOI: 10.1016/j.mtchem.2021.100613] [Reference Citation Analysis]
116 Sotoma S. Polyglycerol/Polydopamine-Coated Nanoparticles for Biomedical Applications. Front Mater 2022;9:878455. [DOI: 10.3389/fmats.2022.878455] [Reference Citation Analysis]
117 Bajracharya R, Song JG, Patil BR, Lee SH, Noh HM, Kim DH, Kim GL, Seo SH, Park JW, Jeong SH, Lee CH, Han HK. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Deliv 2022;29:1959-70. [PMID: 35762636 DOI: 10.1080/10717544.2022.2089296] [Reference Citation Analysis]
118 Nteli P, Bajwa DE, Politakis D, Michalopoulos C, Kefala-Narin A, Efstathopoulos EP, Gazouli M. Nanomedicine approaches for treatment of hematologic and oncologic malignancies. World J Clin Oncol 2022; 13(7): 553-566 [DOI: 10.5306/wjco.v13.i7.553] [Reference Citation Analysis]
119 Ahmad MY, Yue H, Tegafaw T, Liu S, Ho SL, Lee GH, Nam SW, Chang Y. Functionalized Lanthanide Oxide Nanoparticles for Tumor Targeting, Medical Imaging, and Therapy. Pharmaceutics 2021;13:1890. [PMID: 34834305 DOI: 10.3390/pharmaceutics13111890] [Reference Citation Analysis]
120 Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022;7:8. [PMID: 35467307 DOI: 10.1186/s41181-022-00161-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
121 Ma Z, Foda MF, Zhao Y, Han H. Multifunctional Nanosystems with Enhanced Cellular Uptake for Tumor Therapy. Adv Healthc Mater 2022;11:e2101703. [PMID: 34626528 DOI: 10.1002/adhm.202101703] [Reference Citation Analysis]
122 Nwasike C, Purr E, Yoo E, Nagi JS, Doiron AL. Activatable Nanoparticles: Recent Advances in Redox-Sensitive Magnetic Resonance Contrast Agent Candidates Capable of Detecting Inflammation. Pharmaceuticals (Basel) 2021;14:69. [PMID: 33467028 DOI: 10.3390/ph14010069] [Reference Citation Analysis]
123 Liu T, Yan J, He C, You W, Ma F, Chang Z, Li Y, Han S, He W, Liu W. A Tumor-Targeting Metal-Organic Nanoparticle Constructed by Dynamic Combinatorial Chemistry toward Accurately Redressing Carcinogenic Wnt Cascade. Small 2021;:e2104849. [PMID: 34741406 DOI: 10.1002/smll.202104849] [Reference Citation Analysis]
124 Smidova V, Michalek P, Goliasova Z, Eckschlager T, Hodek P, Adam V, Heger Z. Nanomedicine of tyrosine kinase inhibitors. Theranostics 2021;11:1546-67. [PMID: 33408767 DOI: 10.7150/thno.48662] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 8.0] [Reference Citation Analysis]
125 Lu T, Haemmerich D, Liu H, Seynhaeve ALB, van Rhoon GC, Houtsmuller AB, Ten Hagen TLM. Externally triggered smart drug delivery system encapsulating idarubicin shows superior kinetics and enhances tumoral drug uptake and response. Theranostics 2021;11:5700-12. [PMID: 33897876 DOI: 10.7150/thno.55163] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
126 Jiao W, Zhang T, Peng M, Yi J, He Y, Fan H. Design of Magnetic Nanoplatforms for Cancer Theranostics. Biosensors (Basel) 2022;12:38. [PMID: 35049666 DOI: 10.3390/bios12010038] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
127 Bonferoni MC, Rassu G, Gavini E, Sorrenti M, Catenacci L, Torre ML, Perteghella S, Ansaloni L, Maestri M, Giunchedi P. Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible "EPR Effect Enhancer" to Improve Cancer Nanomedicine Efficacy. Cancers (Basel) 2021;13:4437. [PMID: 34503247 DOI: 10.3390/cancers13174437] [Reference Citation Analysis]
128 Anani T, Rahmati S, Sultana N, David AE. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics 2021;11:579-601. [PMID: 33391494 DOI: 10.7150/thno.48811] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 17.0] [Reference Citation Analysis]
129 Holay M, Zhou J, Park JH, Landa I, Ventura CJ, Gao W, Fang RH, Zhang L. Organotropic Targeting of Biomimetic Nanoparticles to Treat Lung Disease. Bioconjug Chem 2022. [PMID: 35285617 DOI: 10.1021/acs.bioconjchem.1c00599] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
130 Qiao C, Wang X, Liu G, Yang Z, Jia Q, Wang L, Zhang R, Xia Y, Wang Z, Yang Y. Erythrocyte Membrane Camouflaged Metal–Organic Framework Nanodrugs for Remodeled Tumor Microenvironment and Enhanced Tumor Chemotherapy. Adv Funct Materials 2022;32:2107791. [DOI: 10.1002/adfm.202107791] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
131 Andisheh F, Oroojalian F, Shakour N, Ramezani M, Shamsara J, Khodaverdi E, Nassirli H, Hadizadeh F, Alibolandi M. Docetaxel encapsulation in nanoscale assembly micelles of folate-PEG-docetaxel conjugates for targeted fighting against metastatic breast cancer in vitro and in vivo. Int J Pharm 2021;605:120822. [PMID: 34182039 DOI: 10.1016/j.ijpharm.2021.120822] [Reference Citation Analysis]
132 Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, Fazalul Rahiman SS, Wahab HA. Advanced Nanoparticle-Based Drug Delivery Systems and Their Cellular Evaluation for Non-Small Cell Lung Cancer Treatment. Cancers (Basel) 2021;13:3539. [PMID: 34298753 DOI: 10.3390/cancers13143539] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
133 Franco P, De Marco I. Nanoparticles and Nanocrystals by Supercritical CO2-Assisted Techniques for Pharmaceutical Applications: A Review. Applied Sciences 2021;11:1476. [DOI: 10.3390/app11041476] [Cited by in Crossref: 9] [Cited by in F6Publishing: 3] [Article Influence: 9.0] [Reference Citation Analysis]
134 Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2021;329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
135 Mohammadzadeh V, Rahiman N, Hosseinikhah SM, Barani M, Rahdar A, Jaafari MR, Sargazi S, Zirak MR, Pandey S, Bhattacharjee R, Gupta AK, Thakur VK, Sibuh BZ, Gupta PK. Novel EPR-enhanced strategies for targeted drug delivery in pancreatic cancer: An update. Journal of Drug Delivery Science and Technology 2022;73:103459. [DOI: 10.1016/j.jddst.2022.103459] [Reference Citation Analysis]
136 Zhang X, Liu W. Engineering Injectable Anti‐Inflammatory Hydrogels to Treat Acute Myocardial Infarction. Advanced NanoBiomed Research. [DOI: 10.1002/anbr.202200008] [Reference Citation Analysis]
137 Cortez-Jugo C, Czuba-Wojnilowicz E, Tan A, Caruso F. A Focus on "Bio" in Bio-Nanoscience: The Impact of Biological Factors on Nanomaterial Interactions. Adv Healthc Mater 2021;10:e2100574. [PMID: 34170631 DOI: 10.1002/adhm.202100574] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
138 Vinothini K, Dhilip Kumar SS, Abrahamse H, Rajan M. Enhanced Doxorubicin Delivery in Folate-Overexpressed Breast Cancer Cells Using Mesoporous Carbon Nanospheres. ACS Omega 2021;6:34532-45. [PMID: 34963938 DOI: 10.1021/acsomega.1c04820] [Reference Citation Analysis]
139 Kadkhoda J, Aghanejad A, Safari B, Barar J, Rasta SH, Davaran S. Aptamer-conjugated gold nanoparticles for targeted paclitaxel delivery and photothermal therapy in breast cancer. Journal of Drug Delivery Science and Technology 2022;67:102954. [DOI: 10.1016/j.jddst.2021.102954] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
140 Xue Y, Bai S, Wang L, Luo S, Zhang Z, Gong T, Zhang L. A dual-responsive nanoplatform with feedback amplification improves antitumor efficacy of photodynamic therapy. Nanoscale 2022. [PMID: 35113116 DOI: 10.1039/d1nr06875j] [Reference Citation Analysis]
141 Darwish W. Polymers for enhanced photodynamic cancer therapy: Phthalocyanines as a photosensitzer model. Polym Adv Technol 2021;32:919-30. [DOI: 10.1002/pat.5154] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
142 Ingram N, McVeigh LE, Abou-Saleh RH, Maynard J, Peyman SA, McLaughlan JR, Fairclough M, Marston G, Valleley EMA, Jimenez-Macias JL, Charalambous A, Townley W, Haddrick M, Wierzbicki A, Wright A, Volpato M, Simpson PB, Treanor DE, Thomson NH, Loadman PM, Bushby RJ, Johnson BRG, Jones PF, Evans JA, Freear S, Markham AF, Evans SD, Coletta PL. Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics 2020;10:10973-92. [PMID: 33042265 DOI: 10.7150/thno.49670] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 8.0] [Reference Citation Analysis]
143 Das P, Jana NR. Biomedical Applications of Functional Polyaspartamide-Based Materials. ACS Appl Polym Mater 2021;3:4791-811. [DOI: 10.1021/acsapm.1c00785] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
144 Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021;11:571. [PMID: 34207137 DOI: 10.3390/jpm11060571] [Reference Citation Analysis]
145 Qian X, Xu X, Wu Y, Wang J, Li J, Chen S, Wen J, Li Y, Zhang Z. Strategies of engineering nanomedicines for tumor retention. J Control Release 2022:S0168-3659(22)00200-0. [PMID: 35447297 DOI: 10.1016/j.jconrel.2022.04.006] [Reference Citation Analysis]
146 Tian H, Zhao S, Nice EC, Huang C, He W, Zou B, Lin J. A cascaded copper-based nanocatalyst by modulating glutathione and cyclooxygenase-2 for hepatocellular carcinoma therapy. J Colloid Interface Sci 2022;607:1516-26. [PMID: 34592546 DOI: 10.1016/j.jcis.2021.09.049] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 12.0] [Reference Citation Analysis]
147 Pozdniakova NV, Ryabaya OV, Semkina AS, Skribitsky VA, Shevelev AB. Using ELP Repeats as a Scaffold for De Novo Construction of Gadolinium-Binding Domains within Multifunctional Recombinant Proteins for Targeted Delivery of Gadolinium to Tumour Cells. Int J Mol Sci 2022;23:3297. [PMID: 35328725 DOI: 10.3390/ijms23063297] [Reference Citation Analysis]
148 Kimura A, Ueno M, Arai T, Oyama K, Taguchi M. Radiation Crosslinked Smart Peptide Nanoparticles: A New Platform for Tumor Imaging. Nanomaterials (Basel) 2021;11:714. [PMID: 33809100 DOI: 10.3390/nano11030714] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
149 Jin F, Zeng Q, Qian H, Zhang D, Wei Y, Wang Y, Chai C, Cheng W, Ding S, Chen T. Dual-Targeted Self-Assembled DNA Hydrogels Decorated With Multivalent Aptamers Loaded With DOX for Anticancer Therapy. Front Pharmacol 2022;13:807498. [PMID: 35281887 DOI: 10.3389/fphar.2022.807498] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
150 Zhang L, Yang R, Yu H, Xu Z, Kang Y, Cui H, Xue P. MnO2-capped silk fibroin (SF) nanoparticles with chlorin e6 (Ce6) encapsulation for augmented photo-driven therapy by modulating the tumor microenvironment. J Mater Chem B 2021;9:3677-88. [PMID: 33949613 DOI: 10.1039/d1tb00296a] [Reference Citation Analysis]
151 Valenzuela C, Chen C, Sun M, Ye Z, Zhang J. Strategies and applications of covalent organic frameworks as promising nanoplatforms in cancer therapy. J Mater Chem B 2021;9:3450-83. [PMID: 33909746 DOI: 10.1039/d1tb00041a] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 5.0] [Reference Citation Analysis]
152 Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020;:1-9. [PMID: 32901205 DOI: 10.1007/s10989-020-10108-5] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
153 Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. Nano Converg 2022;9:2. [PMID: 34997888 DOI: 10.1186/s40580-021-00293-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. Nanotechnology 2021;32. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Reference Citation Analysis]
155 Jugniot N, Massoud TF, Dahl JJ, Paulmurugan R. Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging. J Nanobiotechnology 2022;20:267. [PMID: 35689262 DOI: 10.1186/s12951-022-01484-9] [Reference Citation Analysis]
156 Hashida M. Advocation and advancements of EPR effect theory in drug delivery science: A commentary. J Control Release 2022:S0168-3659(22)00227-9. [PMID: 35483640 DOI: 10.1016/j.jconrel.2022.04.031] [Reference Citation Analysis]
157 Hou Y, Jin J, Duan H, Liu C, Chen L, Huang W, Gao Z, Jin M. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials 2022. [DOI: 10.1016/j.biomaterials.2022.121440] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
158 Mirzaei S, Mahabady MK, Zabolian A, Abbaspour A, Fallahzadeh P, Noori M, Hashemi F, Hushmandi K, Daneshi S, Kumar AP, Aref AR, Samarghandian S, Makvandi P, Khan H, Hamblin MR, Ashrafizadeh M, Zarrabi A. Small interfering RNA (siRNA) to target genes and molecular pathways in glioblastoma therapy: Current status with an emphasis on delivery systems. Life Sci 2021;275:119368. [PMID: 33741417 DOI: 10.1016/j.lfs.2021.119368] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
159 Grilc NK, Sova M, Kristl J. Drug Delivery Strategies for Curcumin and Other Natural Nrf2 Modulators of Oxidative Stress-Related Diseases. Pharmaceutics 2021;13:2137. [PMID: 34959418 DOI: 10.3390/pharmaceutics13122137] [Reference Citation Analysis]
160 Simón M, Jørgensen JT, Melander F, Andresen TL, Christensen A, Kjaer A. Photothermal Therapy as Adjuvant to Surgery in an Orthotopic Mouse Model of Human Fibrosarcoma. Cancers (Basel) 2021;13:5820. [PMID: 34830974 DOI: 10.3390/cancers13225820] [Reference Citation Analysis]
161 Mochizuki C, Nakamura J, Nakamura M. Development of Non-Porous Silica Nanoparticles towards Cancer Photo-Theranostics. Biomedicines 2021;9:73. [PMID: 33451074 DOI: 10.3390/biomedicines9010073] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
162 Thangudu S, Cheng FY, Su CH. Advancements in the Blood-Brain Barrier Penetrating Nanoplatforms for Brain Related Disease Diagnostics and Therapeutic Applications. Polymers (Basel) 2020;12:E3055. [PMID: 33419339 DOI: 10.3390/polym12123055] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
163 Kheraldine H, Rachid O, Habib AM, Al Moustafa AE, Benter IF, Akhtar S. Emerging innate biological properties of nano-drug delivery systems: A focus on PAMAM dendrimers and their clinical potential. Adv Drug Deliv Rev 2021;178:113908. [PMID: 34390777 DOI: 10.1016/j.addr.2021.113908] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 9.0] [Reference Citation Analysis]
164 Luo J, Schmaus J, Cui M, Hörterer E, Wilk U, Höhn M, Däther M, Berger S, Benli-Hoppe T, Peng L, Wagner E. Hyaluronate siRNA nanoparticles with positive charge display rapid attachment to tumor endothelium and penetration into tumors. J Control Release 2021;329:919-33. [PMID: 33069742 DOI: 10.1016/j.jconrel.2020.10.022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
165 Migliore R, D'Antona N, Sgarlata C, Consoli GML. Co-Loading of Temozolomide and Curcumin into a Calix[4]arene-Based Nanocontainer for Potential Combined Chemotherapy: Binding Features, Enhanced Drug Solubility and Stability in Aqueous Medium. Nanomaterials (Basel) 2021;11:2930. [PMID: 34835694 DOI: 10.3390/nano11112930] [Reference Citation Analysis]
166 Song L, Chen XW, Liu Y, Wang H, Li JQ. Synthetic polymer material modified by d-peptide and its targeted application in the treatment of non-small cell lung cancer. Int J Pharm 2022;619:121651. [PMID: 35288222 DOI: 10.1016/j.ijpharm.2022.121651] [Reference Citation Analysis]
167 Wang Z, Wang D, Liu X, Wu H, Liu Y, Ge Y, Yan G, Tang R. Dynamic carboxymethyl chitosan-based nano-prodrugs precisely mediate robust synergistic chemotherapy. Carbohydrate Polymers 2022;291:119671. [DOI: 10.1016/j.carbpol.2022.119671] [Reference Citation Analysis]
168 Kang Z, Yang M, Feng X, Liao H, Zhang Z, Du Y. Multifunctional Theranostic Nanoparticles for Enhanced Tumor Targeted Imaging and Synergistic FUS/Chemotherapy on Murine 4T1 Breast Cancer Cell. IJN 2022;Volume 17:2165-87. [DOI: 10.2147/ijn.s360161] [Reference Citation Analysis]
169 Igaz N, Bélteky P, Kovács D, Papp C, Rónavári A, Szabó D, Gácser A, Kónya Z, Kiricsi M. Functionalized Mesoporous Silica Nanoparticles for Drug-Delivery to Multidrug-Resistant Cancer Cells. Int J Nanomedicine 2022;17:3079-96. [PMID: 35859731 DOI: 10.2147/IJN.S363952] [Reference Citation Analysis]
170 Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021;171:105780. [PMID: 34302977 DOI: 10.1016/j.phrs.2021.105780] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
171 Tan P, Cai H, Wei Q, Tang X, Zhang Q, Kopytynski M, Yang J, Yi Y, Zhang H, Gong Q, Gu Z, Chen R, Luo K. Enhanced chemo-photodynamic therapy of an enzyme-responsive prodrug in bladder cancer patient-derived xenograft models. Biomaterials 2021;277:121061. [PMID: 34508957 DOI: 10.1016/j.biomaterials.2021.121061] [Reference Citation Analysis]
172 Tran BT, Kim J, Ahn DR. Systemic delivery of aptamer-drug conjugates for cancer therapy using enzymatically generated self-assembled DNA nanoparticles. Nanoscale 2020;12:22945-51. [PMID: 33188383 DOI: 10.1039/d0nr05652a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
173 Prajapati R, Garcia-Garrido E, Somoza Á. Albumin-Based Nanoparticles for the Delivery of Doxorubicin in Breast Cancer. Cancers (Basel) 2021;13:3011. [PMID: 34208533 DOI: 10.3390/cancers13123011] [Reference Citation Analysis]
174 Zhao T, Wu W, Sui L, Huang Q, Nan Y, Liu J, Ai K. Reactive oxygen species-based nanomaterials for the treatment of myocardial ischemia reperfusion injuries. Bioact Mater 2022;7:47-72. [PMID: 34466716 DOI: 10.1016/j.bioactmat.2021.06.006] [Cited by in Crossref: 43] [Cited by in F6Publishing: 35] [Article Influence: 43.0] [Reference Citation Analysis]
175 Li H, Zhang Y, Shu H, Lv W, Su C, Nie F. Highlights in ultrasound-targeted microbubble destruction-mediated gene/drug delivery strategy for treatment of malignancies. Int J Pharm 2021;:121412. [PMID: 34942327 DOI: 10.1016/j.ijpharm.2021.121412] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
176 Zhang H, Song F, Dong C, Yu L, Chang C, Chen Y. Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor-activated and photothermal-augmented chemotherapy of breast cancer. J Nanobiotechnology 2021;19:290. [PMID: 34579711 DOI: 10.1186/s12951-021-01025-w] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
177 Choi PS, Lee JY, Yang SD, Park JH. Biological behavior of nanoparticles with Zr-89 for cancer targeting based on their distinct surface composition. J Mater Chem B 2021;9:8237-45. [PMID: 34590668 DOI: 10.1039/d1tb01473k] [Reference Citation Analysis]
178 Vodnik VV, Mojić M, Stamenović U, Otoničar M, Ajdžanović V, Maksimović-Ivanić D, Mijatović S, Marković MM, Barudžija T, Filipović B, Milošević V, Šošić-Jurjević B. Development of genistein-loaded gold nanoparticles and their antitumor potential against prostate cancer cell lines. Mater Sci Eng C Mater Biol Appl 2021;124:112078. [PMID: 33947570 DOI: 10.1016/j.msec.2021.112078] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
179 Manandhar S, Sjöholm E, Bobacka J, Rosenholm JM, Bansal KK. Polymer-Drug Conjugates as Nanotheranostic Agents. JNT 2021;2:63-81. [DOI: 10.3390/jnt2010005] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
180 Zhang P, Ma X, Guo R, Ye Z, Fu H, Fu N, Guo Z, Zhang J, Zhang J. Organic Nanoplatforms for Iodinated Contrast Media in CT Imaging. Molecules 2021;26:7063. [PMID: 34885645 DOI: 10.3390/molecules26237063] [Reference Citation Analysis]
181 Müllerová M, Maciel D, Nunes N, Wrobel D, Stofik M, Červenková Št́astná L, Krupková A, Cuřínová P, Nováková K, Božík M, Malý M, Malý J, Rodrigues J, Strašák T. Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules 2022;23:276-90. [DOI: 10.1021/acs.biomac.1c01264] [Reference Citation Analysis]
182 Glinkowska Mares A, Feiner-gracia N, Muela Y, Martínez G, Delgado L, Albertazzi L, Pujals S. Towards Cellular Ultrastructural Characterization in Organ-on-a-Chip by Transmission Electron Microscopy. Applied Nano 2021;2:289-302. [DOI: 10.3390/applnano2040021] [Reference Citation Analysis]
183 Zhang J, Liu W, Zhang P, Song Y, Ye Z, Fu H, Yang S, Qin Q, Guo Z, Zhang J. Polymers for Improved Delivery of Iodinated Contrast Agents. ACS Biomater Sci Eng 2021. [PMID: 34851607 DOI: 10.1021/acsbiomaterials.1c01082] [Reference Citation Analysis]
184 Mohamed Isa ED, Ahmad H, Abdul Rahman MB, Gill MR. Progress in Mesoporous Silica Nanoparticles as Drug Delivery Agents for Cancer Treatment. Pharmaceutics 2021;13:152. [PMID: 33498885 DOI: 10.3390/pharmaceutics13020152] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 6.0] [Reference Citation Analysis]
185 Li X, Ji Y, Chen M, Zhang S, Wang Z, Su D, Luo N. A Dual-Mode Imaging Nanoparticle Probe Targeting PD-L1 for Triple-Negative Breast Cancer. Contrast Media Mol Imaging 2022;2022:2431026. [PMID: 35694705 DOI: 10.1155/2022/2431026] [Reference Citation Analysis]
186 Carter OWL, Xu Y, Sadler PJ. Minerals in biology and medicine. RSC Adv 2021;11:1939-51. [DOI: 10.1039/d0ra09992a] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
187 Chinnathambi S, Tamanoi F. Recent Development to Explore the Use of Biodegradable Periodic Mesoporous Organosilica (BPMO) Nanomaterials for Cancer Therapy. Pharmaceutics 2020;12:E890. [PMID: 32961990 DOI: 10.3390/pharmaceutics12090890] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
188 Ejigah V, Owoseni O, Bataille-backer P, Ogundipe OD, Fisusi FA, Adesina SK. Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers 2022;14:2601. [DOI: 10.3390/polym14132601] [Reference Citation Analysis]
189 De Leo V, Milano F, Agostiano A, Catucci L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers (Basel) 2021;13:1027. [PMID: 33810273 DOI: 10.3390/polym13071027] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]