BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang L, Huang Y, Lindstrom AR, Lin TY, Lam KS, Li Y. Peptide-based materials for cancer immunotherapy. Theranostics 2019;9:7807-25. [PMID: 31695802 DOI: 10.7150/thno.37194] [Cited by in Crossref: 39] [Cited by in F6Publishing: 45] [Article Influence: 9.8] [Reference Citation Analysis]
Number Citing Articles
1 Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse.. [DOI: 10.1101/2023.02.02.526919] [Reference Citation Analysis]
2 Choe D, Choi D. Cancel cancer: The immunotherapeutic potential of CD200/CD200R blockade. Front Oncol 2023;13. [DOI: 10.3389/fonc.2023.1088038] [Reference Citation Analysis]
3 Tian R, Shang Y, Wang Y, Jiang Q, Ding B. DNA Nanomaterials-Based Platforms for Cancer Immunotherapy. Small Methods 2023;:e2201518. [PMID: 36651129 DOI: 10.1002/smtd.202201518] [Reference Citation Analysis]
4 Du JJ, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2022;10:1107600. [PMID: 36733612 DOI: 10.3389/fchem.2022.1107600] [Reference Citation Analysis]
5 Luan X, Kong H, He P, Yang G, Zhu D, Guo L, Wei G. Self-Assembled Peptide-Based Nanodrugs: Molecular Design, Synthesis, Functionalization, and Targeted Tumor Bioimaging and Biotherapy. Small 2023;19:e2205787. [PMID: 36440657 DOI: 10.1002/smll.202205787] [Reference Citation Analysis]
6 Charoenkwan P, Pipattanaboon C, Nantasenamat C, Hasan MM, Moni MA, Lio' P, Shoombuatong W. PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning. Comput Biol Med 2023;152:106368. [PMID: 36481763 DOI: 10.1016/j.compbiomed.2022.106368] [Reference Citation Analysis]
7 Jain A, Alex TS, Lang DK, Gupta S. Stimuli-responsive protein fibers for advanced applications. Smart Polymeric Nano-Constructs in Drug Delivery 2023. [DOI: 10.1016/b978-0-323-91248-8.00013-1] [Reference Citation Analysis]
8 Bassan GA, Marchesan S. Peptide-Based Materials That Exploit Metal Coordination. Int J Mol Sci 2022;24. [PMID: 36613898 DOI: 10.3390/ijms24010456] [Reference Citation Analysis]
9 Serrano-Quintero A, Sequeda-Juárez A, Pérez-Hernández CA, Sosa-Delgado SM, Mendez-Tenorio A, Ramón-Gallegos E. Immunogenic analysis of epitope-based vaccine candidate induced by photodynamic therapy in MDA-MB-231 triple-negative breast cancer cells. Photodiagnosis Photodyn Ther 2022;40:103174. [PMID: 36602069 DOI: 10.1016/j.pdpdt.2022.103174] [Reference Citation Analysis]
10 Tobias J, Drinić M, Schmid A, Hladik A, Watzenböck ML, Battin C, Garner-Spitzer E, Steinberger P, Kundi M, Knapp S, Zielinski CC, Wiedermann U. Combined Vaccination with B Cell Peptides Targeting Her-2/neu and Immune Checkpoints as Emerging Treatment Option in Cancer. Cancers (Basel) 2022;14. [PMID: 36428769 DOI: 10.3390/cancers14225678] [Reference Citation Analysis]
11 Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. Journal of Controlled Release 2022;351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Reference Citation Analysis]
12 Sittplangkoon C, Alameh M, Weissman D, Lin PJC, Tam YK, Prompetchara E, Palaga T. mRNA vaccine with unmodified uridine induces robust type I interferon-dependent anti-tumor immunity in a melanoma model. Front Immunol 2022;13:983000. [DOI: 10.3389/fimmu.2022.983000] [Reference Citation Analysis]
13 Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Singh P, Goel VK, Kumar R, Kumar V. Functionalized Peptide-Based Nanoparticles for Targeted Cancer Nanotherapeutics: A State-of-the-Art Review. ACS Omega. [DOI: 10.1021/acsomega.2c03974] [Reference Citation Analysis]
14 Kim S, Park J, Lee S, Lee H, Jung J, Lee Y, Cho H, Kim J, Kim K, Park C, Lee C. Efficient anti-tumor immunotherapy using tumor epitope-coated biodegradable nanoparticles combined with polyinosinic-polycytidylic acid and an anti-PD1 monoclonal antibody.. [DOI: 10.21203/rs.3.rs-2043402/v1] [Reference Citation Analysis]
15 Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao C. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022;13:931612. [DOI: 10.3389/fimmu.2022.931612] [Reference Citation Analysis]
16 Yonekura S, Ueda K. FXYD3 Expression Predicts Poor Prognosis in Renal Cell Carcinoma with Immunosuppressive Tumor Microenvironment. Cancers 2022;14:3596. [DOI: 10.3390/cancers14153596] [Reference Citation Analysis]
17 Zhang T, Guo S, Li F, Lan X, Jia Y, Zhang J, Huang Y, Liang XJ. Image-guided/improved diseases management: From immune-strategies and beyond. Adv Drug Deliv Rev 2022;188:114446. [PMID: 35820600 DOI: 10.1016/j.addr.2022.114446] [Reference Citation Analysis]
18 Flickinger JC Jr, Staudt RE, Singh J, Carlson RD, Barton JR, Baybutt TR, Rappaport JA, Zalewski A, Pattison A, Waldman SA, Snook AE. Chimeric adenoviral (Ad5.F35) and listeria vector prime-boost immunization is safe and effective for cancer immunotherapy. NPJ Vaccines 2022;7:61. [PMID: 35739202 DOI: 10.1038/s41541-022-00483-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Feola S, Russo S, Martins B, Lopes A, Vandermeulen G, Fluhler V, De Giorgi C, Fusciello M, Pesonen S, Ylösmäki E, Antignani G, Chiaro J, Hamdan F, Feodoroff M, Grönholm M, Cerullo V. Peptides-Coated Oncolytic Vaccines for Cancer Personalized Medicine. Front Immunol 2022;13:826164. [DOI: 10.3389/fimmu.2022.826164] [Reference Citation Analysis]
20 Wang X, Cheng J, Zhang L, Zhang J. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Delivery 2022;29:1184-200. [DOI: 10.1080/10717544.2022.2058647] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022;:1-21. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Liu Y, Zhang L, Chang R, Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem Commun (Camb) 2022;58:2247-58. [PMID: 35083992 DOI: 10.1039/d1cc06355c] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
23 Roesler AS, Anderson KS. Beyond Sequencing: Prioritizing and Delivering Neoantigens for Cancer Vaccines. Methods Mol Biol 2022;2410:649-70. [PMID: 34914074 DOI: 10.1007/978-1-0716-1884-4_35] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Singh MA, Shrivastava TP, Sharma A, Gupta M. Cancer immunotherapy. Nanotherapeutics in Cancer Vaccination and Challenges 2022. [DOI: 10.1016/b978-0-12-823686-4.00019-7] [Reference Citation Analysis]
25 Nwonu EJ. Approaches to cancer vaccination. Vaccinology and Methods in Vaccine Research 2022. [DOI: 10.1016/b978-0-323-91146-7.00003-2] [Reference Citation Analysis]
26 Kim S, Park J, Lee S, Lee H, Jung J, Lee Y, Cho H, Kim J, Kim K, Park C, Lee C. Efficient Anti-Tumor Immunotherapy Using Tumor Epitope-Coated Biodegradable Nanoparticles Combined With Polyinosinic-Polycytidylic Acid and an Anti-PD1 Monoclonal Antibody. Immune Netw 2022;22. [DOI: 10.4110/in.2022.22.e42] [Reference Citation Analysis]
27 Shaikh S. Immunoimaging. Advances in Imaging 2022. [DOI: 10.1007/978-981-16-9535-3_17] [Reference Citation Analysis]
28 Zafar A, Hasan M, Tariq T, Dai Z. Enhancing Cancer Immunotherapeutic Efficacy with Sonotheranostic Strategies. Bioconjug Chem 2021. [PMID: 34793138 DOI: 10.1021/acs.bioconjchem.1c00437] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
29 Tobias J, Steinberger P, Drinić M, Wiedermann U. Emerging targets for anticancer vaccination: PD-1. ESMO Open 2021;6:100278. [PMID: 34649221 DOI: 10.1016/j.esmoop.2021.100278] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
30 Zhu J, Huang R, Yang R, Xiao Y, Yan J, Zheng C, Xiao W, Huang C, Wang Y. Licorice extract inhibits growth of non-small cell lung cancer by down-regulating CDK4-Cyclin D1 complex and increasing CD8+ T cell infiltration. Cancer Cell Int 2021;21:529. [PMID: 34641869 DOI: 10.1186/s12935-021-02223-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
31 Luthra R, Datta S, Roy A. Role of Different Peptides for Cancer Immunotherapy. Int J Pept Res Ther 2021;27:2777-93. [DOI: 10.1007/s10989-021-10289-7] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
32 Jaishankar D, Cosgrove C, Ramesh P, Mahon J, Shivde R, Dellacecca ER, Yang SF, Mosenson J, Guevara-Patiño JA, Le Poole IC. HSP70iQ435A to subdue autoimmunity and support anti-tumor responses. Cell Stress Chaperones 2021;26:845-57. [PMID: 34542825 DOI: 10.1007/s12192-021-01229-x] [Reference Citation Analysis]
33 Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2021;:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
34 Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021;19:253. [PMID: 34425823 DOI: 10.1186/s12951-021-00999-x] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
35 Wang P, Wang JW, Zhang WH, Bai H, Tang G, Young DJ. In Vitro Anticancer Activity of Nanoformulated Mono- and Di-nuclear Pt Compounds. Chem Asian J 2021. [PMID: 34387027 DOI: 10.1002/asia.202100901] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
36 Mahaki H, Saeed Modaghegh MH, Nasr Isfahani Z, Amir Daddost R, Molaei P, Ahmadyousefi Y, Vahidzadeh M, Lotfiane E, Tanzadehpanah H. The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review. Int J Pept Res Ther 2021;27:2527-42. [DOI: 10.1007/s10989-021-10270-4] [Reference Citation Analysis]
37 Deng Z, Yuan C, Wang T, Chen X, Liu Y. Peptide-based assemblies as immune checkpoint inhibitor delivery systems for enhanced immunotherapy. Applied Materials Today 2021;23:101063. [DOI: 10.1016/j.apmt.2021.101063] [Reference Citation Analysis]
38 Yamada K, Masuda K, Ida S, Tada H, Bando M, Abe K, Tatematsu KI, Sezutsu H, Oyama T, Chikamatsu K, Takeda S. In vitro assessment of antitumor immune responses using tumor antigen proteins produced by transgenic silkworms. J Mater Sci Mater Med 2021;32:58. [PMID: 33999320 DOI: 10.1007/s10856-021-06526-6] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
39 Mondlane ER, Abreu-Mendes P, Martins D, Cruz R, Mendes F. The role of immunotherapy in advanced renal cell carcinoma: Review. Int Braz J Urol 2021;47:1228-42. [PMID: 33650838 DOI: 10.1590/S1677-5538.IBJU.2020.0681] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
40 Kondo S, Shimizu T, Koyama T, Sato J, Iwasa S, Yonemori K, Fujiwara Y, Shimomura A, Kitano S, Tamura K, Yamamoto N. First-in-human study of the cancer peptide vaccine TAS0313 in patients with advanced solid tumors. Cancer Sci 2021;112:1514-23. [PMID: 33615628 DOI: 10.1111/cas.14765] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
41 Mahdevar E, Safavi A, Abiri A, Kefayat A, Hejazi SH, Miresmaeili SM, Iranpur Mobarakeh V. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn 2021;:1-18. [PMID: 33599191 DOI: 10.1080/07391102.2021.1883111] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
42 Duwa R, Jeong J, Yook S. Immunotherapeutic strategies for the treatment of ovarian cancer: current status and future direction. Journal of Industrial and Engineering Chemistry 2021;94:62-77. [DOI: 10.1016/j.jiec.2020.11.015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
43 Lee J, Kim C. Peptide Materials for Smart Therapeutic Applications. Macromol Res 2021;29:2-14. [DOI: 10.1007/s13233-021-9011-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
44 Wang J, Liu J, Yang Z. Recent advances in peptide-based nanomaterials for targeting hypoxia. Nanoscale Adv 2021;3:6027-6039. [DOI: 10.1039/d1na00637a] [Reference Citation Analysis]
45 Szabo I, Zoratti M, Biasutto L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol 2021;42:101846. [PMID: 33419703 DOI: 10.1016/j.redox.2020.101846] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 7.0] [Reference Citation Analysis]
46 Chang R, Yan X. Supramolecular Immunotherapy of Cancer Based on the Self‐Assembling Peptide Design. Small Structures 2020;1:2000068. [DOI: 10.1002/sstr.202000068] [Cited by in Crossref: 33] [Cited by in F6Publishing: 33] [Article Influence: 11.0] [Reference Citation Analysis]
47 Li L, Zou J, Dai Y, Fan W, Niu G, Yang Z, Chen X. Burst release of encapsulated annexin A5 in tumours boosts cytotoxic T-cell responses by blocking the phagocytosis of apoptotic cells. Nat Biomed Eng 2020;4:1102-16. [PMID: 32807941 DOI: 10.1038/s41551-020-0599-5] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 17.3] [Reference Citation Analysis]
48 Cui J, Shu C, Xu J, Chen D, Li J, Ding K, Chen M, Li A, He J, Shu Y, Yang L, Zhang R, Zhou J. JP1 suppresses proliferation and metastasis of melanoma through MEK1/2 mediated NEDD4L-SP1-Integrin αvβ3 signaling. Theranostics 2020;10:8036-50. [PMID: 32724456 DOI: 10.7150/thno.45843] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
49 Kaumaya PT. B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Future Oncol 2020;16:1767-91. [PMID: 32564612 DOI: 10.2217/fon-2020-0224] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 1.7] [Reference Citation Analysis]
50 Chen X, Chen M. Critical reviews of immunotheranostics. Theranostics 2020;10:7403-5. [PMID: 32642000 DOI: 10.7150/thno.48966] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
51 Guo J, Huang L. Membrane-core nanoparticles for cancer nanomedicine. Adv Drug Deliv Rev 2020;156:23-39. [PMID: 32450105 DOI: 10.1016/j.addr.2020.05.005] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
52 Tornesello AL, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Nanoparticles to Improve the Efficacy of Peptide-Based Cancer Vaccines. Cancers (Basel) 2020;12:E1049. [PMID: 32340356 DOI: 10.3390/cancers12041049] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 9.7] [Reference Citation Analysis]
53 Kim JS, Lee D, Kim D, Mun SJ, Cho E, Son W, Yang CS. Toxoplasma gondii GRA8-derived peptide immunotherapy improves tumor targeting of colorectal cancer. Oncotarget 2020;11:62-73. [PMID: 32002124 DOI: 10.18632/oncotarget.27417] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]