BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ngambenjawong C, Gustafson HH, Pineda JM, Kacherovsky NA, Cieslewicz M, Pun SH. Serum Stability and Affinity Optimization of an M2 Macrophage-Targeting Peptide (M2pep). Theranostics 2016;6:1403-14. [PMID: 27375788 DOI: 10.7150/thno.15394] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 3.7] [Reference Citation Analysis]
Number Citing Articles
1 Huang M, Wang R, Li M, Cai H, Tian R. Peptide-Based [(68)Ga]Ga Labeled PET Tracer for Tumor Imaging by Targeting Tumor-Associated Macrophages. Pharmaceutics 2022;14. [PMID: 36432702 DOI: 10.3390/pharmaceutics14112511] [Reference Citation Analysis]
2 Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022;10:1203. [DOI: 10.3390/biomedicines10051203] [Reference Citation Analysis]
3 Xu L, Xu S, Xiang T, Liu H, Chen L, Jiang B, Yao J, Zhu H, Hu R, Chen Z. Multifunctional building elements for the construction of peptide drug conjugates. Engineered Regeneration 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
4 Rizvi SFA, Mu S, Zhao C, Zhang H. Fabrication of self-assembled peptide nanoparticles for in vitro assessment of cell apoptosis pathway and in vivo therapeutic efficacy. Mikrochim Acta 2022;189:53. [PMID: 34999971 DOI: 10.1007/s00604-021-05148-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Hourani T, Holden JA, Li W, Lenzo JC, Hadjigol S, O'Brien-Simpson NM. Tumor Associated Macrophages: Origin, Recruitment, Phenotypic Diversity, and Targeting. Front Oncol 2021;11:788365. [PMID: 34988021 DOI: 10.3389/fonc.2021.788365] [Cited by in Crossref: 14] [Cited by in F6Publishing: 20] [Article Influence: 14.0] [Reference Citation Analysis]
6 Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022;180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
7 Kovacs L, Davis RA, Ganguly T, Chammas R, Sutcliffe JL. Repurposing an atherosclerosis targeting peptide for tumor imaging. Biomed Pharmacother 2022;145:112469. [PMID: 34864315 DOI: 10.1016/j.biopha.2021.112469] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Lucana MC, Arruga Y, Petrachi E, Roig A, Lucchi R, Oller-Salvia B. Protease-Resistant Peptides for Targeting and Intracellular Delivery of Therapeutics. Pharmaceutics 2021;13:2065. [PMID: 34959346 DOI: 10.3390/pharmaceutics13122065] [Cited by in Crossref: 3] [Cited by in F6Publishing: 17] [Article Influence: 1.5] [Reference Citation Analysis]
9 Lv S, Sylvestre M, Prossnitz AN, Yang LF, Pun SH. Design of Polymeric Carriers for Intracellular Peptide Delivery in Oncology Applications. Chem Rev 2021;121:11653-98. [PMID: 33566580 DOI: 10.1021/acs.chemrev.0c00963] [Cited by in Crossref: 18] [Cited by in F6Publishing: 23] [Article Influence: 9.0] [Reference Citation Analysis]
10 Panchal D, Kataria J, Patel K, Crowe K, Pai V, Azizogli AR, Kadian N, Sanyal S, Roy A, Dodd-O J, Acevedo-Jake AM, Kumar VA. Peptide-Based Inhibitors for SARS-CoV-2 and SARS-CoV. Adv Ther (Weinh) 2021;:2100104. [PMID: 34514085 DOI: 10.1002/adtp.202100104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
11 Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. Wiley Interdiscip Rev RNA 2021;12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
12 Ma YS, Wu TM, Ling CC, Yu F, Zhang J, Cao PS, Gu LP, Wang HM, Xu H, Li L, Wu ZJ, Wang GR, Li W, Lin QL, Liu JB, Fu D. M2 macrophage-derived exosomal microRNA-155-5p promotes the immune escape of colon cancer by downregulating ZC3H12B. Mol Ther Oncolytics 2021;20:484-98. [PMID: 33718596 DOI: 10.1016/j.omto.2021.02.005] [Cited by in Crossref: 19] [Cited by in F6Publishing: 25] [Article Influence: 9.5] [Reference Citation Analysis]
13 Han S, Wang W, Wang S, Yang T, Zhang G, Wang D, Ju R, Lu Y, Wang H, Wang L. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes. Theranostics 2021;11:2892-916. [PMID: 33456579 DOI: 10.7150/thno.50928] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 15.0] [Reference Citation Analysis]
14 Xia Y, Rao L, Yao H, Wang Z, Ning P, Chen X. Engineering Macrophages for Cancer Immunotherapy and Drug Delivery. Adv Mater 2020;32:e2002054. [PMID: 32856350 DOI: 10.1002/adma.202002054] [Cited by in Crossref: 176] [Cited by in F6Publishing: 194] [Article Influence: 58.7] [Reference Citation Analysis]
15 Sylvestre M, Crane CA, Pun SH. Progress on Modulating Tumor-Associated Macrophages with Biomaterials. Adv Mater 2020;32:e1902007. [PMID: 31559665 DOI: 10.1002/adma.201902007] [Cited by in Crossref: 70] [Cited by in F6Publishing: 70] [Article Influence: 23.3] [Reference Citation Analysis]
16 Scodeller P, Asciutto EK. Targeting Tumors Using Peptides. Molecules 2020;25:E808. [PMID: 32069856 DOI: 10.3390/molecules25040808] [Cited by in Crossref: 31] [Cited by in F6Publishing: 33] [Article Influence: 10.3] [Reference Citation Analysis]
17 Zhang P, Jian C, Jian S, Zhang Q, Sun X, Nie L, Liu B, Li F, Li J, Liu M, Liang S, Zeng Y, Liu Z. Position Effect of Fatty Acid Modification on the Cytotoxicity and Antimetastasis Potential of the Cytotoxic Peptide Lycosin-I. J Med Chem 2019;62:11108-18. [DOI: 10.1021/acs.jmedchem.9b01126] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
18 Sellers DL, Tan JY, Pineda JMB, Peeler DJ, Porubsky VL, Olden BR, Salipante SJ, Pun SH. Targeting Ligands Deliver Model Drug Cargo into the Central Nervous System along Autonomic Neurons. ACS Nano 2019;13:10961-71. [PMID: 31589023 DOI: 10.1021/acsnano.9b01515] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
19 Huey R, Rathbone D, Mccarron P, Hawthorne S. Design, stability and efficacy of a new targeting peptide for nanoparticulate drug delivery to SH-SY5Y neuroblastoma cells. Journal of Drug Targeting 2019;27:959-70. [DOI: 10.1080/1061186x.2019.1567737] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
20 Newman MR, Benoit DSW. In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjug Chem 2018;29:2161-9. [PMID: 29889510 DOI: 10.1021/acs.bioconjchem.8b00285] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
21 Ngambenjawong C, Sylvestre M, Gustafson HH, Pineda JMB, Pun SH. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions. ACS Chem Biol 2018;13:995-1002. [PMID: 29481044 DOI: 10.1021/acschembio.8b00171] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 Kakoschky B, Pleli T, Schmithals C, Zeuzem S, Brüne B, Vogl TJ, Korf HW, Weigert A, Piiper A. Selective targeting of tumor associated macrophages in different tumor models. PLoS One 2018;13:e0193015. [PMID: 29447241 DOI: 10.1371/journal.pone.0193015] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 2.4] [Reference Citation Analysis]
23 Ngambenjawong C, Gustafson HH, Sylvestre M, Pun SH. A Facile Cyclization Method Improves Peptide Serum Stability and Confers Intrinsic Fluorescence. Chembiochem 2017;18:2395-8. [PMID: 29044914 DOI: 10.1002/cbic.201700446] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
24 Nagarajan K, Marimuthu SK, Palanisamy S, Subbiah L. Peptide Therapeutics Versus Superbugs: Highlight on Current Research and Advancements. Int J Pept Res Ther 2018;24:19-33. [DOI: 10.1007/s10989-017-9650-0] [Cited by in Crossref: 14] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
25 Ngambenjawong C, Pun SH. Multivalent polymers displaying M2 macrophage-targeting peptides improve target binding avidity and serum stability. ACS Biomater Sci Eng 2017;3:2050-3. [PMID: 29430522 DOI: 10.1021/acsbiomaterials.7b00332] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
26 Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev 2017;114:206-21. [PMID: 28449873 DOI: 10.1016/j.addr.2017.04.010] [Cited by in Crossref: 291] [Cited by in F6Publishing: 322] [Article Influence: 48.5] [Reference Citation Analysis]
27 He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017;247:106-26. [PMID: 28057522 DOI: 10.1016/j.jconrel.2016.12.032] [Cited by in Crossref: 29] [Cited by in F6Publishing: 31] [Article Influence: 4.8] [Reference Citation Analysis]
28 Ngambenjawong C, Pineda JM, Pun SH. Engineering an Affinity-Enhanced Peptide through Optimization of Cyclization Chemistry. Bioconjug Chem 2016;27:2854-62. [PMID: 27779387 DOI: 10.1021/acs.bioconjchem.6b00502] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
29 Wang J, Cui H. Nanostructure-Based Theranostic Systems. Theranostics 2016;6:1274-6. [PMID: 27375778 DOI: 10.7150/thno.16479] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 2.4] [Reference Citation Analysis]