BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wu W, Wu F, Wang Z, Di J, Yang J, Gao P, Jiang B, Su X. CENPH Inhibits Rapamycin Sensitivity by Regulating GOLPH3-dependent mTOR Signaling Pathway in Colorectal Cancer. J Cancer 2017;8:2163-72. [PMID: 28819418 DOI: 10.7150/jca.19940] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Yao Z, Pan X, Chen W, Pei Y, Chen C, Huang Y, Liu S, Liu Y, Liu Q. Bioinformatics Analysis of Prognosis-Related Genes and Expression of CXCL8 in Colorectal Cancer. BioMed Research International 2022;2022:1-14. [DOI: 10.1155/2022/3149887] [Reference Citation Analysis]
2 Gong LY, Tu T, Zhu J, Hu AP, Song JW, Huang JQ, Yang Y, Zhu Z, Chen Y. Golgi phosphoprotein 3 induces autophagy and epithelial-mesenchymal transition to promote metastasis in colon cancer. Cell Death Discov 2022;8:76. [PMID: 35190555 DOI: 10.1038/s41420-022-00864-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
3 Wang T, Fei J, Nie S. Clinicopathologic and prognostic implications of Golgi Phosphoprotein 3 in colorectal cancer: A meta-analysis. PLoS One 2021;16:e0260035. [PMID: 34807928 DOI: 10.1371/journal.pone.0260035] [Reference Citation Analysis]
4 Zheng R, Wang C, Zhang T, Tan Y, Sun C. Cultured deep-sea PVC bacteria shed light on eukaryogenesis.. [DOI: 10.1101/2021.11.19.469327] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Li Y, Wang J, Elzo MA, Fan H, Du K, Xia S, Shao J, Lai T, Hu S, Jia X, Lai S. Molecular Profiling of DNA Methylation and Alternative Splicing of Genes in Skeletal Muscle of Obese Rabbits. Curr Issues Mol Biol 2021;43:1558-75. [PMID: 34698087 DOI: 10.3390/cimb43030110] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Cui Z, Xiao L, Chen F, Wang J, Lin H, Li D, Wu Z. High mRNA Expression of CENPL and Its Significance in Prognosis of Hepatocellular Carcinoma Patients. Dis Markers 2021;2021:9971799. [PMID: 34457090 DOI: 10.1155/2021/9971799] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
7 Yu Z, Ma X, Zhang W, Chang X, An L, Niu M, Chen Y, Sun C, Yang Y. Microarray Data Mining and Preliminary Bioinformatics Analysis of Hepatitis D Virus-Associated Hepatocellular Carcinoma. Biomed Res Int 2021;2021:1093702. [PMID: 33564675 DOI: 10.1155/2021/1093702] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Dudea-Simon M, Mihu D, Irimie A, Cojocneanu R, Korban SS, Oprean R, Braicu C, Berindan-Neagoe I. Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis. Int J Mol Sci 2020;21:E7323. [PMID: 33023042 DOI: 10.3390/ijms21197323] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. Impact of genetic polymorphisms in kinetochore and spindle assembly genes on chromosomal aberration frequency in healthy humans. Mutat Res Genet Toxicol Environ Mutagen 2020;858-860:503253. [PMID: 33198934 DOI: 10.1016/j.mrgentox.2020.503253] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
10 Zhai X, Yang Z, Liu X, Dong Z, Zhou D. Identification of NUF2 and FAM83D as potential biomarkers in triple-negative breast cancer. PeerJ 2020;8:e9975. [PMID: 33005492 DOI: 10.7717/peerj.9975] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
11 Chen S, Li H, Li X, Chen W, Zhang X, Yang Z, Chen Z, Chen J, Zhang Y, Shi D, Song M. High SOX8 expression promotes tumor growth and predicts poor prognosis through GOLPH3 signaling in tongue squamous cell carcinoma. Cancer Med 2020;9:4274-89. [PMID: 32307911 DOI: 10.1002/cam4.3041] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
12 Waugh MG. The Great Escape: how phosphatidylinositol 4-kinases and PI4P promote vesicle exit from the Golgi (and drive cancer). Biochemical Journal 2019;476:2321-46. [DOI: 10.1042/bcj20180622] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 11.3] [Reference Citation Analysis]
13 Arriagada C, Luchsinger C, González AE, Schwenke T, Arriagada G, Folch H, Ehrenfeld P, Burgos PV, Mardones GA. The knocking down of the oncoprotein Golgi phosphoprotein 3 in T98G cells of glioblastoma multiforme disrupts cell migration by affecting focal adhesion dynamics in a focal adhesion kinase-dependent manner. PLoS One 2019;14:e0212321. [PMID: 30779783 DOI: 10.1371/journal.pone.0212321] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
14 Kuna RS, Field SJ. GOLPH3: a Golgi phosphatidylinositol(4)phosphate effector that directs vesicle trafficking and drives cancer. J Lipid Res 2019;60:269-75. [PMID: 30266835 DOI: 10.1194/jlr.R088328] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 9.0] [Reference Citation Analysis]
15 Wu F, Gao P, Wu W, Wang Z, Yang J, Di J, Jiang B, Su X. STK25-induced inhibition of aerobic glycolysis via GOLPH3-mTOR pathway suppresses cell proliferation in colorectal cancer. J Exp Clin Cancer Res 2018;37:144. [PMID: 29996891 DOI: 10.1186/s13046-018-0808-1] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]