BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mavanji V, Perez-Leighton CE, Kotz CM, Billington CJ, Parthasarathy S, Sinton CM, Teske JA. Promotion of Wakefulness and Energy Expenditure by Orexin-A in the Ventrolateral Preoptic Area. Sleep 2015;38:1361-70. [PMID: 25845696 DOI: 10.5665/sleep.4970] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 3.9] [Reference Citation Analysis]
Number Citing Articles
1 Alvarez B, Barrientos T, Gac L, Teske J, Perez-leighton C. Effects on Hedonic Feeding, Energy Expenditure and Balance of the Non-opioid Peptide DYN-A2-17. Neuroscience 2018;371:337-45. [DOI: 10.1016/j.neuroscience.2017.11.044] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 0.8] [Reference Citation Analysis]
2 Deporter DP, Coborn JE, Teske JA. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure: Sleep Deprivation Dampens EE During Physical Activity. Obesity 2017;25:1716-22. [DOI: 10.1002/oby.21944] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
3 Coborn JE, Lessie RE, Sinton CM, Rance NE, Perez-Leighton CE, Teske JA. Noise-induced sleep disruption increases weight gain and decreases energy metabolism in female rats. Int J Obes (Lond) 2019;43:1759-68. [PMID: 30568267 DOI: 10.1038/s41366-018-0293-9] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
4 Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022;14:e1536. [PMID: 35023323 DOI: 10.1002/wsbm.1536] [Reference Citation Analysis]
5 Ballester P, Richdale AL, Baker EK, Peiró AM. Sleep in autism: A biomolecular approach to aetiology and treatment. Sleep Med Rev 2020;54:101357. [PMID: 32759030 DOI: 10.1016/j.smrv.2020.101357] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 Amodeo LR, Liu W, Wills DN, Vetreno RP, Crews FT, Ehlers CL. Adolescent alcohol exposure increases orexin-A/hypocretin-1 in the anterior hypothalamus. Alcohol 2020;88:65-72. [PMID: 32619610 DOI: 10.1016/j.alcohol.2020.06.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Simmons SJ, Gentile TA. Cocaine abuse and midbrain circuits: Functional anatomy of hypocretin/orexin transmission and therapeutic prospect. Brain Res 2020;1731:146164. [PMID: 30796894 DOI: 10.1016/j.brainres.2019.02.026] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
8 Liu M, Min T, Zhang H, Liu Y, Wang Z. Pharmacological Characteristics of Porcine Orexin 2 Receptor and Mutants. Front Endocrinol (Lausanne) 2020;11:132. [PMID: 32296386 DOI: 10.3389/fendo.2020.00132] [Reference Citation Analysis]
9 Perez-Leighton C, Little MR, Grace M, Billington C, Kotz CM. Orexin signaling in rostral lateral hypothalamus and nucleus accumbens shell in the control of spontaneous physical activity in high- and low-activity rats. Am J Physiol Regul Integr Comp Physiol 2017;312:R338-46. [PMID: 28039192 DOI: 10.1152/ajpregu.00339.2016] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
10 Li T, Xu W, Ouyang J, Lu X, Sherchan P, Lenahan C, Irio G, Zhang JH, Zhao J, Zhang Y, Tang J. Orexin A alleviates neuroinflammation via OXR2/CaMKKβ/AMPK signaling pathway after ICH in mice. J Neuroinflammation 2020;17:187. [PMID: 32539736 DOI: 10.1186/s12974-020-01841-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
11 Wang C, Xu C, Liu M, Pan Y, Bai B, Chen J. C-terminus of OX2R significantly affects downstream signaling pathways. Mol Med Rep 2017;16:159-66. [PMID: 28487995 DOI: 10.3892/mmr.2017.6557] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
12 Zhu P, Zhang Z, Huang X, Liang S, Khandekar N, Song Z, Lin S. RANKL Reduces Body Weight and Food Intake via the Modulation of Hypothalamic NPY/CART Expression. Int J Med Sci 2018;15:969-77. [PMID: 30013437 DOI: 10.7150/ijms.24373] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
13 Hao YY, Yuan HW, Fang PH, Zhang Y, Liao YX, Shen C, Wang D, Zhang TT, Bo P. Plasma orexin-A level associated with physical activity in obese people. Eat Weight Disord 2017;22:69-77. [PMID: 27038345 DOI: 10.1007/s40519-016-0271-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
14 Mavanji V, Georgopoulos AP, Kotz CM. Synchronous neuronal interactions in rat hypothalamic culture: a novel model for the study of network dynamics in metabolic disorders. Exp Brain Res 2021;239:755-64. [PMID: 33388905 DOI: 10.1007/s00221-020-05977-7] [Reference Citation Analysis]
15 Parrish JB, Teske JA. Acute partial sleep deprivation due to environmental noise increases weight gain by reducing energy expenditure in rodents: Acute Partial Sleep Deprivation Reduces Energy Expenditure. Obesity 2017;25:141-6. [DOI: 10.1002/oby.21703] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 2.3] [Reference Citation Analysis]
16 Farzi A, Lau J, Ip CK, Qi Y, Shi YC, Zhang L, Tasan R, Sperk G, Herzog H. Arcuate nucleus and lateral hypothalamic CART neurons in the mouse brain exert opposing effects on energy expenditure. Elife 2018;7:e36494. [PMID: 30129922 DOI: 10.7554/eLife.36494] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 4.3] [Reference Citation Analysis]
17 Zhang D, Perrey DA, Decker AM, Langston TL, Mavanji V, Harris DL, Kotz CM, Zhang Y. Discovery of Arylsulfonamides as Dual Orexin Receptor Agonists. J Med Chem 2021;64:8806-25. [PMID: 34101446 DOI: 10.1021/acs.jmedchem.1c00841] [Reference Citation Analysis]
18 Osorio RS, Ducca EL, Wohlleber ME, Tanzi EB, Gumb T, Twumasi A, Tweardy S, Lewis C, Fischer E, Koushyk V, Cuartero-Toledo M, Sheikh MO, Pirraglia E, Zetterberg H, Blennow K, Lu SE, Mosconi L, Glodzik L, Schuetz S, Varga AW, Ayappa I, Rapoport DM, de Leon MJ. Orexin-A is Associated with Increases in Cerebrospinal Fluid Phosphorylated-Tau in Cognitively Normal Elderly Subjects. Sleep 2016;39:1253-60. [PMID: 26951396 DOI: 10.5665/sleep.5846] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 4.7] [Reference Citation Analysis]
19 Mavanji V, Butterick TA, Duffy CM, Nixon JP, Billington CJ, Kotz CM. Orexin/hypocretin treatment restores hippocampal-dependent memory in orexin-deficient mice. Neurobiol Learn Mem 2017;146:21-30. [PMID: 29107703 DOI: 10.1016/j.nlm.2017.10.014] [Cited by in Crossref: 34] [Cited by in F6Publishing: 33] [Article Influence: 6.8] [Reference Citation Analysis]
20 Coborn JE, DePorter DP, Mavanji V, Sinton CM, Kotz CM, Billington CJ, Teske JA. Role of orexin-A in the ventrolateral preoptic area on components of total energy expenditure. Int J Obes (Lond) 2017;41:1256-62. [PMID: 28392556 DOI: 10.1038/ijo.2017.92] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
21 Arrigoni E, Fuller PM. The Sleep-Promoting Ventrolateral Preoptic Nucleus: What Have We Learned over the Past 25 Years? Int J Mol Sci 2022;23:2905. [PMID: 35328326 DOI: 10.3390/ijms23062905] [Reference Citation Analysis]
22 Lecorps B, Rödel HG, Féron C. Assessment of anxiety in open field and elevated plus maze using infrared thermography. Physiol Behav 2016;157:209-16. [PMID: 26884121 DOI: 10.1016/j.physbeh.2016.02.014] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.0] [Reference Citation Analysis]
23 Shen YC, Sun X, Li L, Zhang HY, Huang ZL, Wang YQ. Roles of Neuropeptides in Sleep-Wake Regulation. Int J Mol Sci 2022;23:4599. [PMID: 35562990 DOI: 10.3390/ijms23094599] [Reference Citation Analysis]
24 Klockars A, Levine AS, Olszewski PK. Hypothalamic Integration of the Endocrine Signaling Related to Food Intake. Curr Top Behav Neurosci 2019;43:239-69. [PMID: 29886517 DOI: 10.1007/7854_2018_54] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 8.0] [Reference Citation Analysis]
25 Mohammadi S, Dolatshahi M, Zare-shahabadi A, Rahmani F. Untangling narcolepsy and diabetes: Pathomechanisms with eyes on therapeutic options. Brain Research 2019;1718:212-22. [DOI: 10.1016/j.brainres.2019.04.013] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
27 Um YH, Lim HK. Orexin and Alzheimer's Disease: A New Perspective. Psychiatry Investig 2020;17:621-6. [PMID: 32517419 DOI: 10.30773/pi.2020.0136] [Reference Citation Analysis]
28 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Silvani A. Orexins and the cardiovascular events of awakening. Temperature (Austin) 2017;4:128-40. [PMID: 28680929 DOI: 10.1080/23328940.2017.1295128] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
30 Liguori C. Orexin and Alzheimer’s Disease. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 305-22. [DOI: 10.1007/7854_2016_50] [Cited by in Crossref: 29] [Cited by in F6Publishing: 24] [Article Influence: 4.8] [Reference Citation Analysis]