BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jiang JP, Liu XY, Zhao F, Zhu X, Li XY, Niu XG, Yao ZT, Dai C, Xu HY, Ma K, Chen XY, Zhang S. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen Res 2020;15:959-68. [PMID: 31719263 DOI: 10.4103/1673-5374.268974] [Cited by in Crossref: 33] [Cited by in F6Publishing: 25] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Yonesi M, Garcia-Nieto M, Guinea GV, Panetsos F, Pérez-Rigueiro J, González-Nieto D. Silk Fibroin: An Ancient Material for Repairing the Injured Nervous System. Pharmaceutics 2021;13:429. [PMID: 33806846 DOI: 10.3390/pharmaceutics13030429] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Chen Z, Li Y, Dai Y, Zhou Z, Hu Y, Liu H. Fabrication and Characterization of a Novel Berberine-oleanolic Acid Delivery Collagen I scaffold. J Phys : Conf Ser 2020;1637:012105. [DOI: 10.1088/1742-6596/1637/1/012105] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
3 Zhang J, Wang RJ, Chen M, Liu XY, Ma K, Xu HY, Deng WS, Ye YC, Li WX, Chen XY, Sun HT. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury. Neural Regen Res 2021;16:1068-77. [PMID: 33269752 DOI: 10.4103/1673-5374.300458] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
4 Li Q, Yue C, Chen T, Ding C, Zhang H. Construction and characterization of conductive collagen/multiwalled carbon nanotube composite films for nerve tissue engineering. AIP Advances 2022;12:055124. [DOI: 10.1063/5.0090006] [Reference Citation Analysis]
5 Zarepour A, Hooshmand S, Gökmen A, Zarrabi A, Mostafavi E. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Cells 2021;10:3189. [PMID: 34831412 DOI: 10.3390/cells10113189] [Reference Citation Analysis]
6 Zhang J, Liu X, Ma K, Chen M, Xu H, Niu X, Gu H, Wang R, Chen X, Sun H. Collagen/heparin scaffold combined with vascular endothelial growth factor promotes the repair of neurological function in rats with traumatic brain injury. Biomater Sci 2021;9:745-64. [DOI: 10.1039/c9bm01446b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
7 Qiu B, Bessler N, Figler K, Buchholz MB, Rios AC, Malda J, Levato R, Caiazzo M. Bioprinting Neural Systems to Model Central Nervous System Diseases. Adv Funct Mater 2020;30:1910250. [PMID: 34566552 DOI: 10.1002/adfm.201910250] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
8 Veiga A, Castro F, Rocha F, Oliveira A. Silk-based microcarriers: current developments and future perspectives. IET Nanobiotechnol 2020;14:645-53. [PMID: 33108319 DOI: 10.1049/iet-nbt.2020.0058] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 Zimmermann R, Vieira Alves Y, Sperling LE, Pranke P. Nanotechnology for the Treatment of Spinal Cord Injury. Tissue Eng Part B Rev 2021;27:353-65. [PMID: 33135599 DOI: 10.1089/ten.TEB.2020.0188] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
10 Jiang J, Dai C, Liu X, Dai L, Li R, Ma K, Xu H, Zhao F, Zhang Z, He T, Niu X, Chen X, Zhang S. Implantation of regenerative complexes in traumatic brain injury canine models enhances the reconstruction of neural networks and motor function recovery. Theranostics 2021;11:768-88. [PMID: 33391504 DOI: 10.7150/thno.50540] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
11 . Corrigendum: Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen Res 2020;15:1961. [PMID: 32246646 DOI: 10.4103/1673-5374.280332] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Huang ZH, Feng AY, Liu J, Zhou L, Zhou B, Yu P. Inhibitor of DNA binding 2 accelerates nerve regeneration after sciatic nerve injury in mice. Neural Regen Res 2021;16:2542-8. [PMID: 33907046 DOI: 10.4103/1673-5374.313054] [Reference Citation Analysis]
13 Jemni-Damer N, Guedan-Duran A, Cichy J, Lozano-Picazo P, Gonzalez-Nieto D, Perez-Rigueiro J, Rojo F, V Guinea G, Virtuoso A, Cirillo G, Papa M, Armada-Maresca F, Largo-Aramburu C, Aznar-Cervantes SD, Cenis JL, Panetsos F. First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). J Neural Eng 2020;17:055003. [PMID: 32947273 DOI: 10.1088/1741-2552/abb9c0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Yin P, Liu Y, Xiao L, Zhang C. Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers (Basel) 2021;13:2834. [PMID: 34451372 DOI: 10.3390/polym13162834] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 des Rieux A. Stem cells and their extracellular vesicles as natural and bioinspired carriers for the treatment of neurological disorders. Current Opinion in Colloid & Interface Science 2021;54:101460. [DOI: 10.1016/j.cocis.2021.101460] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Chen X, Wang Y, Zhou G, Hu X, Han S, Gao J. The combination of nanoscaffolds and stem cell transplantation: Paving a promising road for spinal cord injury regeneration. Biomed Pharmacother 2021;143:112233. [PMID: 34649357 DOI: 10.1016/j.biopha.2021.112233] [Reference Citation Analysis]
17 Sun WM, Ma CL, Xu J, He JP. Reduction in post-spinal cord injury spasticity by combination of peripheral nerve grafting and acidic fibroblast growth factor infusion in monkeys. J Int Med Res 2021;49:3000605211022294. [PMID: 34154433 DOI: 10.1177/03000605211022294] [Reference Citation Analysis]
18 Chen S, Liu S, Zhang L, Han Q, Liu H, Shen J, Li G, Zhang L, Yang Y. Construction of injectable silk fibroin/polydopamine hydrogel for treatment of spinal cord injury. Chemical Engineering Journal 2020;399:125795. [DOI: 10.1016/j.cej.2020.125795] [Cited by in Crossref: 18] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
19 Vettori L, Sharma P, Rnjak-kovacina J, Gentile C. 3D Bioprinting of Cardiovascular Tissues for In Vivo and In Vitro Applications Using Hybrid Hydrogels Containing Silk Fibroin: State of the Art and Challenges. Curr Tissue Microenviron Rep 2020;1:261-76. [DOI: 10.1007/s43152-020-00026-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
20 Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020;5:E49. [PMID: 33050136 DOI: 10.3390/biomimetics5040049] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 De I, Sharma P, Singh M. Emerging approaches of neural regeneration using physical stimulations solely or coupled with smart piezoelectric nano-biomaterials. European Journal of Pharmaceutics and Biopharmaceutics 2022. [DOI: 10.1016/j.ejpb.2022.02.016] [Reference Citation Analysis]
22 Yu X, Zhang T, Li Y. 3D Printing and Bioprinting Nerve Conduits for Neural Tissue Engineering. Polymers (Basel) 2020;12:E1637. [PMID: 32717878 DOI: 10.3390/polym12081637] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 4.5] [Reference Citation Analysis]
23 Saremi J, Mahmoodi N, Rasouli M, Ranjbar FE, Mazaheri EL, Akbari M, Hasanzadeh E, Azami M. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments. Biomed Pharmacother 2021;146:112529. [PMID: 34906773 DOI: 10.1016/j.biopha.2021.112529] [Reference Citation Analysis]
24 Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
25 Cadena M, Ning L, King A, Hwang B, Jin L, Serpooshan V, Sloan SA. 3D Bioprinting of Neural Tissues. Adv Healthc Mater 2021;10:e2001600. [PMID: 33200587 DOI: 10.1002/adhm.202001600] [Cited by in Crossref: 14] [Cited by in F6Publishing: 12] [Article Influence: 14.0] [Reference Citation Analysis]
26 Fatimi A, Okoro OV, Podstawczyk D, Siminska-stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022;8:179. [DOI: 10.3390/gels8030179] [Reference Citation Analysis]
27 Jiang S, Yu Z, Zhang L, Wang G, Dai X, Lian X, Yan Y, Zhang L, Wang Y, Li R, Zou H. Effects of different aperture-sized type I collagen/silk fibroin scaffolds on the proliferation and differentiation of human dental pulp cells. Regen Biomater 2021;8:rbab028. [PMID: 34188954 DOI: 10.1093/rb/rbab028] [Reference Citation Analysis]
28 Kim SH, Hong H, Ajiteru O, Sultan MT, Lee YJ, Lee JS, Lee OJ, Lee H, Park HS, Choi KY, Lee JS, Ju HW, Hong IS, Park CH. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc 2021;16:5484-532. [PMID: 34716451 DOI: 10.1038/s41596-021-00622-1] [Reference Citation Analysis]
29 Dadashzadeh A, Moghassemi S, Shavandi A, Amorim CA. A review on biomaterials for ovarian tissue engineering. Acta Biomater 2021;135:48-63. [PMID: 34454083 DOI: 10.1016/j.actbio.2021.08.026] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Fan TW, Higashi RM, Chernayavskaya Y, Lane AN. Resolving Metabolic Heterogeneity in Experimental Models of the Tumor Microenvironment from a Stable Isotope Resolved Metabolomics Perspective. Metabolites 2020;10:E249. [PMID: 32549391 DOI: 10.3390/metabo10060249] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
31 Li XH, Zhu X, Liu XY, Xu HH, Jiang W, Wang JJ, Chen F, Zhang S, Li RX, Chen XY, Tu Y. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats. J Mater Sci Mater Med 2021;32:31. [PMID: 33751254 DOI: 10.1007/s10856-021-06500-2] [Reference Citation Analysis]
32 Mirzaei M, Okoro OV, Nie L, Petri DFS, Shavandi A. Protein-Based 3D Biofabrication of Biomaterials. Bioengineering (Basel) 2021;8:48. [PMID: 33923425 DOI: 10.3390/bioengineering8040048] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
33 Liu S, Xie YY, Wang LD, Tai CX, Chen D, Mu D, Cui YY, Wang B. A multi-channel collagen scaffold loaded with neural stem cells for the repair of spinal cord injury. Neural Regen Res 2021;16:2284-92. [PMID: 33818514 DOI: 10.4103/1673-5374.310698] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Wang WZ, Li J, Liu L, Zhang ZD, Li MX, Li Q, Ma HX, Yang H, Hou XL. Role of circular RNA expression in the pathological progression after spinal cord injury. Neural Regen Res 2021;16:2048-55. [PMID: 33642393 DOI: 10.4103/1673-5374.308100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022;9:813169. [DOI: 10.3389/fbioe.2021.813169] [Reference Citation Analysis]
36 Zamproni LN, Mundim MTVV, Porcionatto MA. Neurorepair and Regeneration of the Brain: A Decade of Bioscaffolds and Engineered Microtissue. Front Cell Dev Biol 2021;9:649891. [PMID: 33898443 DOI: 10.3389/fcell.2021.649891] [Reference Citation Analysis]
37 Yuan T, Zhang J, Yu T, Wu J, Liu Q. 3D Bioprinting for Spinal Cord Injury Repair. Front Bioeng Biotechnol 2022;10:847344. [DOI: 10.3389/fbioe.2022.847344] [Reference Citation Analysis]
38 Yang C, Li S, Huang X, Chen X, Shan H, Chen X, Tao L, Zhang M, Li R. Silk Fibroin Hydrogels Could Be Therapeutic Biomaterials for Neurological Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-12. [DOI: 10.1155/2022/2076680] [Reference Citation Analysis]