BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Espinoza JA, León MA, Céspedes PF, Gómez RS, Canedo-Marroquín G, Riquelme SA, Salazar-Echegarai FJ, Blancou P, Simon T, Anegon I, Lay MK, González PA, Riedel CA, Bueno SM, Kalergis AM. Heme Oxygenase-1 Modulates Human Respiratory Syncytial Virus Replication and Lung Pathogenesis during Infection. J Immunol 2017;199:212-23. [PMID: 28566367 DOI: 10.4049/jimmunol.1601414] [Cited by in F6Publishing: 27] [Reference Citation Analysis]
Number Citing Articles
1 Hu H, Tian M, Yin Y, Zuo D, Guan X, Ding C, Yu S. Brucella induces heme oxygenase-1 expression to promote its infection. Transbound Emerg Dis 2021. [PMID: 34918880 DOI: 10.1111/tbed.14422] [Reference Citation Analysis]
2 Hooper PL. COVID-19 and heme oxygenase: novel insight into the disease and potential therapies. Cell Stress Chaperones 2020;25:707-10. [PMID: 32500379 DOI: 10.1007/s12192-020-01126-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 26] [Article Influence: 9.5] [Reference Citation Analysis]
3 Rossi M, Piagnerelli M, Van Meerhaeghe A, Zouaoui Boudjeltia K. Heme oxygenase-1 (HO-1) cytoprotective pathway: A potential treatment strategy against coronavirus disease 2019 (COVID-19)-induced cytokine storm syndrome. Med Hypotheses. 2020;144:110242. [PMID: 33254548 DOI: 10.1016/j.mehy.2020.110242] [Cited by in Crossref: 5] [Cited by in F6Publishing: 8] [Article Influence: 2.5] [Reference Citation Analysis]
4 Sun T, Yu H, Zhang C, Zhu T, Huang S. Respiratory syncytial virus infection up-regulates TLR7 expression by inducing oxidative stress via the Nrf2/ARE pathway in A549 cells. Arch Virol 2018;163:1209-17. [DOI: 10.1007/s00705-018-3739-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
5 Mirzaei R, Attar A, Papizadeh S, Jeda AS, Hosseini-Fard SR, Jamasbi E, Kazemi S, Amerkani S, Talei GR, Moradi P, Jalalifar S, Yousefimashouf R, Hossain MA, Keyvani H, Karampoor S. The emerging role of probiotics as a mitigation strategy against coronavirus disease 2019 (COVID-19). Arch Virol 2021;166:1819-40. [PMID: 33745067 DOI: 10.1007/s00705-021-05036-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
6 Chawla A, Ray S, Matettore A, Peters MJ. Arterial carboxyhaemoglobin levels in children admitted to PICU: A retrospective observational study. PLoS One 2019;14:e0209452. [PMID: 30845230 DOI: 10.1371/journal.pone.0209452] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2021;9:15-22. [PMID: 33077403 DOI: 10.1016/j.sxmr.2020.08.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
8 Lin HW, Lee YJ, Yang DJ, Hsieh MC, Chen CC, Hsu WL, Chang YY, Liu CW. Anti-inflammatory effects of Flos Lonicerae Japonicae Water Extract are regulated by the STAT/NF-κB pathway and HO-1 expression in Virus-infected RAW264.7 cells. Int J Med Sci 2021;18:2285-93. [PMID: 33967604 DOI: 10.7150/ijms.56198] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 El Kalamouni C, Frumence E, Bos S, Turpin J, Nativel B, Harrabi W, Wilkinson DA, Meilhac O, Gadea G, Desprès P, Krejbich-Trotot P, Viranaïcken W. Subversion of the Heme Oxygenase-1 Antiviral Activity by Zika Virus. Viruses 2018;11:E2. [PMID: 30577437 DOI: 10.3390/v11010002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
10 Zhang A, Wan B, Jiang D, Wu Y, Ji P, Du Y, Zhang G. The Cytoprotective Enzyme Heme Oxygenase-1 Suppresses Pseudorabies Virus Replication in vitro. Front Microbiol 2020;11:412. [PMID: 32231654 DOI: 10.3389/fmicb.2020.00412] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
11 d'Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, Ruberto F, Rossi G, Celani L, Scagnolari C, Mastropietro C, Trinchieri V, Recchia GE, Mauro V, Antonelli G, Pugliese F, Mastroianni CM. Challenges in the Management of SARS-CoV2 Infection: The Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Front Med (Lausanne) 2020;7:389. [PMID: 32733907 DOI: 10.3389/fmed.2020.00389] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 23.0] [Reference Citation Analysis]
12 Ibáñez FJ, Farías MA, Retamal-Díaz A, Espinoza JA, Kalergis AM, González PA. Pharmacological Induction of Heme Oxygenase-1 Impairs Nuclear Accumulation of Herpes Simplex Virus Capsids upon Infection. Front Microbiol 2017;8:2108. [PMID: 29163402 DOI: 10.3389/fmicb.2017.02108] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
13 Mostafa T. Could Oral Phosphodiesterase 5 Inhibitors Have a Potential Adjuvant Role in Combating COVID-19 Infection? Sex Med Rev 2021;9:15-22. [PMID: 33077403 DOI: 10.1016/j.sxmr.2020.08.006] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Carasi P, Rodríguez E, da Costa V, Frigerio S, Brossard N, Noya V, Robello C, Anegón I, Freire T. Heme-Oxygenase-1 Expression Contributes to the Immunoregulation Induced by Fasciola hepatica and Promotes Infection. Front Immunol 2017;8:883. [PMID: 28798750 DOI: 10.3389/fimmu.2017.00883] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.0] [Reference Citation Analysis]
15 Reyes A, Duarte LF, Farías MA, Tognarelli E, Kalergis AM, Bueno SM, González PA. Impact of Hypoxia over Human Viral Infections and Key Cellular Processes. Int J Mol Sci 2021;22:7954. [PMID: 34360716 DOI: 10.3390/ijms22157954] [Reference Citation Analysis]
16 . Primer on the Pathogenesis of Severe COVID-19: Part Two. EMJ. [DOI: 10.33590/emj/20-00159] [Reference Citation Analysis]
17 Sebastián VP, Moreno-tapia D, Melo-gonzález F, Hernández-cáceres MP, Salazar GA, Pardo-roa C, Farías MA, Vallejos OP, Schultz BM, Morselli E, Álvarez-lobos MM, González PA, Kalergis AM, Bueno SM. Limited Heme Oxygenase Contribution to Modulating the Severity of Salmonella enterica serovar Typhimurium Infection. Antioxidants 2022;11:1040. [DOI: 10.3390/antiox11061040] [Reference Citation Analysis]
18 Toro A, Ruiz MS, Lage-vickers S, Sanchis P, Sabater A, Pascual G, Seniuk R, Cascardo F, Ledesma-bazan S, Vilicich F, Vazquez E, Gueron G. A Journey into the Clinical Relevance of Heme Oxygenase 1 for Human Inflammatory Disease and Viral Clearance: Why Does It Matter on the COVID-19 Scene? Antioxidants 2022;11:276. [DOI: 10.3390/antiox11020276] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
19 Kim DH, Ahn HS, Go HJ, Kim DY, Kim JH, Lee JB, Park SY, Song CS, Lee SW, Ha SD, Choi C, Choi IS. Hemin as a novel candidate for treating COVID-19 via heme oxygenase-1 induction. Sci Rep 2021;11:21462. [PMID: 34728736 DOI: 10.1038/s41598-021-01054-3] [Reference Citation Analysis]
20 Maestro S, Córdoba KM, Olague C, Argemi J, Ávila MA, González-Aseguinolaza G, Smerdou C, Fontanellas A. Heme oxygenase-1 inducer hemin does not inhibit SARS-CoV-2 virus infection. Biomed Pharmacother 2021;137:111384. [PMID: 33761605 DOI: 10.1016/j.biopha.2021.111384] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Singh N, Ahmad Z, Baid N, Kumar A. Host heme oxygenase-1: Friend or foe in tackling pathogens? IUBMB Life 2018;70:869-80. [PMID: 29761622 DOI: 10.1002/iub.1868] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 4.3] [Reference Citation Analysis]
22 Pereira MLM, Marinho CRF, Epiphanio S. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome? Front Cell Infect Microbiol 2018;8:161. [PMID: 29868517 DOI: 10.3389/fcimb.2018.00161] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
23 Meydan C, Madrer N, Soreq H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front Immunol 2020;11:590870. [PMID: 33163005 DOI: 10.3389/fimmu.2020.590870] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
24 Canedo-Marroquín G, Soto JA, Andrade CA, Bueno SM, Kalergis AM. Increased Heme Oxygenase 1 Expression upon a Primary Exposure to the Respiratory Syncytial Virus and a Secondary Mycobacterium bovis Infection. Antioxidants (Basel) 2022;11:1453. [PMID: 35892656 DOI: 10.3390/antiox11081453] [Reference Citation Analysis]
25 Yang Y, Wang HX, Zhang L, Huo W, Li XD, Qi RQ, Song XY, Wei S, Gao XH, Han S, Cao L. Inhibition of Heme Oxygenase-1 enhances hyperthermia-induced autophagy and antiviral effect. Int J Biol Sci 2019;15:568-78. [PMID: 30745843 DOI: 10.7150/ijbs.29759] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
26 Rossi G, Galosi L, Gavazza A, Cerquetella M, Mangiaterra S. Therapeutic approaches to coronavirus infection according to "One Health" concept. Res Vet Sci 2021;136:81-8. [PMID: 33588098 DOI: 10.1016/j.rvsc.2021.02.009] [Reference Citation Analysis]
27 Wang Y, Yuyin D, Fengyang C, Xukang Z, Jianliang L. Heme Oxygenase-1 suppresses duck Tembusu virus replication in vitro. Vet Microbiol 2020;251:108885. [PMID: 33157356 DOI: 10.1016/j.vetmic.2020.108885] [Reference Citation Analysis]
28 Ferrari M, Zevini A, Palermo E, Muscolini M, Alexandridi M, Etna MP, Coccia EM, Fernandez-Sesma A, Coyne C, Zhang DD, Marques ETA, Olagnier D, Hiscott J. Dengue Virus Targets Nrf2 for NS2B3-Mediated Degradation Leading to Enhanced Oxidative Stress and Viral Replication. J Virol 2020;94:e01551-20. [PMID: 32999020 DOI: 10.1128/JVI.01551-20] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
29 Singh D, Wasan H, Reeta KH. Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications. Free Radic Biol Med 2020;161:263-71. [PMID: 33091573 DOI: 10.1016/j.freeradbiomed.2020.10.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
30 Fernández-Fierro A, Funes SC, Rios M, Covián C, González J, Kalergis AM. Immune Modulation by Inhibitors of the HO System. Int J Mol Sci 2020;22:E294. [PMID: 33396647 DOI: 10.3390/ijms22010294] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
31 Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti GP, Cavallari EN, Celani L, Marazzato M, Alessandri F, Ruberto F, Pugliese F, Venditti M, Mastroianni CM, d'Ettorre G. Oral Bacteriotherapy in Patients With COVID-19: A Retrospective Cohort Study. Front Nutr 2020;7:613928. [PMID: 33505983 DOI: 10.3389/fnut.2020.613928] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 9.0] [Reference Citation Analysis]
32 You L, Chen J, Liu W, Xiang Q, Luo Z, Wang W, Xu W, Wu K, Zhang Q, Liu Y, Wu J. Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence 2020;11:537-53. [PMID: 32434419 DOI: 10.1080/21505594.2020.1766790] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
33 Lechuga GC, Souza-Silva F, Sacramento CQ, Trugilho MRO, Valente RH, Napoleão-Pêgo P, Dias SSG, Fintelman-Rodrigues N, Temerozo JR, Carels N, Alves CR, Pereira MCS, Provance DW Jr, Souza TML, De-Simone SG. SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites. Int J Mol Sci 2021;22:9035. [PMID: 34445741 DOI: 10.3390/ijms22169035] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]