BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. J Immunol 2013;191:1063-72. [PMID: 23817416 DOI: 10.4049/jimmunol.1300040] [Cited by in Crossref: 52] [Cited by in F6Publishing: 53] [Article Influence: 5.8] [Reference Citation Analysis]
Number Citing Articles
1 Gómez-budia M, Konttinen H, Saveleva L, Korhonen P, Jalava PI, Kanninen KM, Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochemistry International 2020;136:104715. [DOI: 10.1016/j.neuint.2020.104715] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
2 Wu Y, Tang CA, Mealer C, Bastian D, Hanief Sofi M, Tian L, Schutt S, Choi HJ, Ticer T, Zhang M, Sui X, Huang L, Mellor AL, Hu CA, Yu XZ. STING negatively regulates allogeneic T-cell responses by constraining antigen-presenting cell function. Cell Mol Immunol 2021;18:632-43. [PMID: 33500563 DOI: 10.1038/s41423-020-00611-6] [Reference Citation Analysis]
3 Grigsby JG, Cardona SM, Pouw CE, Muniz A, Mendiola AS, Tsin AT, Allen DM, Cardona AE. The role of microglia in diabetic retinopathy. J Ophthalmol 2014;2014:705783. [PMID: 25258680 DOI: 10.1155/2014/705783] [Cited by in Crossref: 73] [Cited by in F6Publishing: 77] [Article Influence: 9.1] [Reference Citation Analysis]
4 McArdel SL, Brown DR, Sobel RA, Sharpe AH. Anti-CD48 Monoclonal Antibody Attenuates Experimental Autoimmune Encephalomyelitis by Limiting the Number of Pathogenic CD4+ T Cells. J Immunol 2016;197:3038-48. [PMID: 27581174 DOI: 10.4049/jimmunol.1600706] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
5 Febinger HY, Thomasy HE, Pavlova MN, Ringgold KM, Barf PR, George AM, Grillo JN, Bachstetter AD, Garcia JA, Cardona AE, Opp MR, Gemma C. Time-dependent effects of CX3CR1 in a mouse model of mild traumatic brain injury. J Neuroinflammation 2015;12:154. [PMID: 26329692 DOI: 10.1186/s12974-015-0386-5] [Cited by in Crossref: 57] [Cited by in F6Publishing: 53] [Article Influence: 8.1] [Reference Citation Analysis]
6 Mai W, Liu X, Wang J, Zheng J, Wang X, Zhou W. Protective effects of CX3CR1 on autoimmune inflammation in a chronic EAE model for MS through modulation of antigen-presenting cell-related molecular MHC-II and its regulators. Neurol Sci 2019;40:779-91. [PMID: 30671738 DOI: 10.1007/s10072-019-3721-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
7 Finneran DJ, Nash KR. Neuroinflammation and fractalkine signaling in Alzheimer's disease. J Neuroinflammation 2019;16:30. [PMID: 30744705 DOI: 10.1186/s12974-019-1412-9] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 14.0] [Reference Citation Analysis]
8 Vujosevic S, Micera A, Bini S, Berton M, Esposito G, Midena E. Proteome analysis of retinal glia cells-related inflammatory cytokines in the aqueous humour of diabetic patients. Acta Ophthalmol 2016;94:56-64. [PMID: 26268591 DOI: 10.1111/aos.12812] [Cited by in Crossref: 55] [Cited by in F6Publishing: 49] [Article Influence: 9.2] [Reference Citation Analysis]
9 Cardona SM, Kim SV, Church KA, Torres VO, Cleary IA, Mendiola AS, Saville SP, Watowich SS, Parker-Thornburg J, Soto-Ospina A, Araque P, Ransohoff RM, Cardona AE. Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Front Cell Neurosci 2018;12:365. [PMID: 30386211 DOI: 10.3389/fncel.2018.00365] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
10 Rayasam A, Kijak JA, Dallmann M, Hsu M, Zindl N, Lindstedt A, Steinmetz L, Harding JS, Harris MG, Karman J, Sandor M, Fabry Z. Regional Distribution of CNS Antigens Differentially Determines T-Cell Mediated Neuroinflammation in a CX3CR1-Dependent Manner. J Neurosci 2018;38:7058-71. [PMID: 29959236 DOI: 10.1523/JNEUROSCI.0366-18.2018] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.8] [Reference Citation Analysis]
11 Menasria R, Canivet C, Piret J, Gosselin J, Boivin G. Protective role of CX3CR1 signalling in resident cells of the central nervous system during experimental herpes simplex virus encephalitis. J Gen Virol 2017;98:447-60. [PMID: 27902351 DOI: 10.1099/jgv.0.000667] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.2] [Reference Citation Analysis]
12 Hertwig L, Hamann I, Romero-Suarez S, Millward JM, Pietrek R, Chanvillard C, Stuis H, Pollok K, Ransohoff RM, Cardona AE, Infante-Duarte C. CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. Eur J Immunol 2016;46:1984-96. [PMID: 27325505 DOI: 10.1002/eji.201546194] [Cited by in Crossref: 19] [Cited by in F6Publishing: 22] [Article Influence: 3.2] [Reference Citation Analysis]
13 Fernandes A, Miller-Fleming L, Pais TF. Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 2014;71:3969-85. [PMID: 25008043 DOI: 10.1007/s00018-014-1670-8] [Cited by in Crossref: 69] [Cited by in F6Publishing: 67] [Article Influence: 8.6] [Reference Citation Analysis]
14 Rajendran R, Giraldo-Velásquez M, Stadelmann C, Berghoff M. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation. Brain Pathol 2018;28:212-24. [PMID: 28117910 DOI: 10.1111/bpa.12487] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.6] [Reference Citation Analysis]
15 Belarbi K, Rosi S. Modulation of adult-born neurons in the inflamed hippocampus. Front Cell Neurosci 2013;7:145. [PMID: 24046730 DOI: 10.3389/fncel.2013.00145] [Cited by in Crossref: 46] [Cited by in F6Publishing: 43] [Article Influence: 5.1] [Reference Citation Analysis]
16 Ransohoff RM, El Khoury J. Microglia in Health and Disease. Cold Spring Harb Perspect Biol 2015;8:a020560. [PMID: 26354893 DOI: 10.1101/cshperspect.a020560] [Cited by in Crossref: 128] [Cited by in F6Publishing: 122] [Article Influence: 18.3] [Reference Citation Analysis]
17 Amici SA, Dong J, Guerau-de-Arellano M. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia. Front Immunol 2017;8:1520. [PMID: 29176977 DOI: 10.3389/fimmu.2017.01520] [Cited by in Crossref: 61] [Cited by in F6Publishing: 63] [Article Influence: 12.2] [Reference Citation Analysis]
18 Ridderstad Wollberg A, Ericsson-Dahlstrand A, Juréus A, Ekerot P, Simon S, Nilsson M, Wiklund SJ, Berg AL, Ferm M, Sunnemark D, Johansson R. Pharmacological inhibition of the chemokine receptor CX3CR1 attenuates disease in a chronic-relapsing rat model for multiple sclerosis. Proc Natl Acad Sci U S A 2014;111:5409-14. [PMID: 24706865 DOI: 10.1073/pnas.1316510111] [Cited by in Crossref: 53] [Cited by in F6Publishing: 46] [Article Influence: 6.6] [Reference Citation Analysis]
19 Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR. CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 2021;:107989. [PMID: 34492237 DOI: 10.1016/j.pharmthera.2021.107989] [Reference Citation Analysis]
20 Wlodarczyk A, Cédile O, Jensen KN, Jasson A, Mony JT, Khorooshi R, Owens T. Pathologic and Protective Roles for Microglial Subsets and Bone Marrow- and Blood-Derived Myeloid Cells in Central Nervous System Inflammation. Front Immunol 2015;6:463. [PMID: 26441968 DOI: 10.3389/fimmu.2015.00463] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 5.1] [Reference Citation Analysis]
21 O'Sullivan SA, Dev KK. The chemokine fractalkine (CX3CL1) attenuates H2O2-induced demyelination in cerebellar slices. J Neuroinflammation 2017;14:159. [PMID: 28810923 DOI: 10.1186/s12974-017-0932-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
22 Lee M, Lee Y, Song J, Lee J, Chang SY. Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw 2018;18:e5. [PMID: 29503738 DOI: 10.4110/in.2018.18.e5] [Cited by in Crossref: 71] [Cited by in F6Publishing: 67] [Article Influence: 17.8] [Reference Citation Analysis]
23 Pissarek M. Positron Emission Tomography in the Inflamed Cerebellum: Addressing Novel Targets among G Protein-Coupled Receptors and Immune Receptors. Pharmaceutics 2020;12:E925. [PMID: 32998351 DOI: 10.3390/pharmaceutics12100925] [Reference Citation Analysis]
24 Boyoglu-Barnum S, Todd SO, Meng J, Barnum TR, Chirkova T, Haynes LM, Jadhao SJ, Tripp RA, Oomens AG, Moore ML, Anderson LJ. Mutating the CX3C Motif in the G Protein Should Make a Live Respiratory Syncytial Virus Vaccine Safer and More Effective. J Virol 2017;91:e02059-16. [PMID: 28275196 DOI: 10.1128/JVI.02059-16] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 6.2] [Reference Citation Analysis]
25 Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, Sammali E, Pischiutta F, De Simoni MG. Fractalkine Receptor Deficiency Is Associated with Early Protection but Late Worsening of Outcome following Brain Trauma in Mice. J Neurotrauma 2016;33:1060-72. [PMID: 26180940 DOI: 10.1089/neu.2015.4041] [Cited by in Crossref: 52] [Cited by in F6Publishing: 55] [Article Influence: 7.4] [Reference Citation Analysis]
26 Blauth K, Zhang X, Chopra M, Rogan S, Markovic-Plese S. The role of fractalkine (CX3CL1) in regulation of CD4(+) cell migration to the central nervous system in patients with relapsing-remitting multiple sclerosis. Clin Immunol 2015;157:121-32. [PMID: 25596452 DOI: 10.1016/j.clim.2015.01.001] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 2.7] [Reference Citation Analysis]
27 Karpus WJ. Cytokines and Chemokines in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. J Immunol 2020;204:316-26. [PMID: 31907274 DOI: 10.4049/jimmunol.1900914] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 6.5] [Reference Citation Analysis]
28 Baufeld C, O'Loughlin E, Calcagno N, Madore C, Butovsky O. Differential contribution of microglia and monocytes in neurodegenerative diseases. J Neural Transm (Vienna) 2018;125:809-26. [PMID: 29063348 DOI: 10.1007/s00702-017-1795-7] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 7.6] [Reference Citation Analysis]
29 Konttinen YT, Pajarinen J, Takakubo Y, Gallo J, Nich C, Takagi M, Goodman SB. Macrophage polarization and activation in response to implant debris: influence by "particle disease" and "ion disease". J Long Term Eff Med Implants 2014;24:267-81. [PMID: 25747030 DOI: 10.1615/jlongtermeffmedimplants.2014011355] [Cited by in Crossref: 22] [Cited by in F6Publishing: 11] [Article Influence: 3.1] [Reference Citation Analysis]
30 Stothert AR, Kaur T. Innate Immunity to Spiral Ganglion Neuron Loss: A Neuroprotective Role of Fractalkine Signaling in Injured Cochlea. Front Cell Neurosci 2021;15:694292. [PMID: 34408629 DOI: 10.3389/fncel.2021.694292] [Reference Citation Analysis]
31 Liu C, Hong K, Chen H, Niu Y, Duan W, Liu Y, Ji Y, Deng B, Li Y, Li Z, Wen D, Li C. Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis. Biol Chem 2019;400:651-61. [PMID: 30352020 DOI: 10.1515/hsz-2018-0204] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]
32 Cserép C, Pósfai B, Dénes Á. Shaping Neuronal Fate: Functional Heterogeneity of Direct Microglia-Neuron Interactions. Neuron 2021;109:222-40. [PMID: 33271068 DOI: 10.1016/j.neuron.2020.11.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
33 Liu Y, Li M, Zhang Z, Ye Y, Zhou J. Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 2018;42:28-39. [PMID: 29247713 DOI: 10.1016/j.arr.2017.12.005] [Cited by in Crossref: 31] [Cited by in F6Publishing: 27] [Article Influence: 7.8] [Reference Citation Analysis]
34 Bandopadhayay P, Stiles CD. Population Control: Cortical Interneurons Modulate Oligodendrogenesis. Neuron 2017;94:415-7. [PMID: 28472644 DOI: 10.1016/j.neuron.2017.04.032] [Reference Citation Analysis]
35 Geladaris A, Häusler D, Weber MS. Microglia: The Missing Link to Decipher and Therapeutically Control MS Progression? Int J Mol Sci 2021;22:3461. [PMID: 33801644 DOI: 10.3390/ijms22073461] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
36 Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci 2018;19:E318. [PMID: 29361745 DOI: 10.3390/ijms19010318] [Cited by in Crossref: 80] [Cited by in F6Publishing: 71] [Article Influence: 20.0] [Reference Citation Analysis]
37 Boyoglu-Barnum S, Chirkova T, Todd SO, Barnum TR, Gaston KA, Jorquera P, Haynes LM, Tripp RA, Moore ML, Anderson LJ. Prophylaxis with a respiratory syncytial virus (RSV) anti-G protein monoclonal antibody shifts the adaptive immune response to RSV rA2-line19F infection from Th2 to Th1 in BALB/c mice. J Virol 2014;88:10569-83. [PMID: 24990999 DOI: 10.1128/JVI.01503-14] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 3.9] [Reference Citation Analysis]
38 Kipp M, Hochstrasser T, Schmitz C, Beyer C. Female sex steroids and glia cells: Impact on multiple sclerosis lesion formation and fine tuning of the local neurodegenerative cellular network. Neuroscience & Biobehavioral Reviews 2016;67:125-36. [DOI: 10.1016/j.neubiorev.2015.11.016] [Cited by in Crossref: 23] [Cited by in F6Publishing: 20] [Article Influence: 3.8] [Reference Citation Analysis]
39 Seo Y, Kim HS, Kang I, Choi SW, Shin TH, Shin JH, Lee BC, Lee JY, Kim JJ, Kook MG, Kang KS. Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia 2016;64:2291-305. [PMID: 27687148 DOI: 10.1002/glia.23077] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 2.7] [Reference Citation Analysis]
40 Geloso MC, D'Ambrosi N. Microglial Pruning: Relevance for Synaptic Dysfunction in Multiple Sclerosis and Related Experimental Models. Cells 2021;10:686. [PMID: 33804596 DOI: 10.3390/cells10030686] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
41 Sosa RA, Murphey C, Ji N, Cardona AE, Forsthuber TG. The kinetics of myelin antigen uptake by myeloid cells in the central nervous system during experimental autoimmune encephalomyelitis. J Immunol 2013;191:5848-57. [PMID: 24227784 DOI: 10.4049/jimmunol.1300771] [Cited by in Crossref: 42] [Cited by in F6Publishing: 43] [Article Influence: 4.7] [Reference Citation Analysis]
42 Panek CA, Bruballa AC, Pineda GE, De Brasi C, Fernández-Brando RJ, Mejías MP, Ramos MV, Palermo MS. Cytokines use different intracellular mechanisms to upregulate the membrane expression of CX3CR1 in human monocytes. Mol Immunol 2019;108:23-33. [PMID: 30776726 DOI: 10.1016/j.molimm.2019.01.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
43 Voronova A, Yuzwa SA, Wang BS, Zahr S, Syal C, Wang J, Kaplan DR, Miller FD. Migrating Interneurons Secrete Fractalkine to Promote Oligodendrocyte Formation in the Developing Mammalian Brain. Neuron 2017;94:500-516.e9. [PMID: 28472653 DOI: 10.1016/j.neuron.2017.04.018] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 8.0] [Reference Citation Analysis]
44 Zilkha-Falb R, Rachutin-Zalogin T, Cleaver L, Gurevich M, Achiron A. RAM-589.555 favors neuroprotective and anti-inflammatory profile of CNS-resident glial cells in acute relapse EAE affected mice. J Neuroinflammation 2020;17:313. [PMID: 33081798 DOI: 10.1186/s12974-020-01983-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
45 Heuss ND, Pierson MJ, Montaniel KR, McPherson SW, Lehmann U, Hussong SA, Ferrington DA, Low WC, Gregerson DS. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice. J Neuroinflammation 2014;11:143. [PMID: 25116321 DOI: 10.1186/s12974-014-0143-1] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 1.8] [Reference Citation Analysis]
46 Watson AES, Goodkey K, Footz T, Voronova A. Regulation of CNS precursor function by neuronal chemokines. Neuroscience Letters 2020;715:134533. [DOI: 10.1016/j.neulet.2019.134533] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
47 Morandi F, Rouas-Freiss N, Pistoia V. The emerging role of soluble HLA-G in the control of chemotaxis. Cytokine Growth Factor Rev 2014;25:327-35. [PMID: 24882150 DOI: 10.1016/j.cytogfr.2014.04.004] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
48 Zabel MK, Zhao L, Zhang Y, Gonzalez SR, Ma W, Wang X, Fariss RN, Wong WT. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia 2016;64:1479-91. [PMID: 27314452 DOI: 10.1002/glia.23016] [Cited by in Crossref: 74] [Cited by in F6Publishing: 80] [Article Influence: 12.3] [Reference Citation Analysis]
49 Lyu J, Jiang X, Leak RK, Shi Y, Hu X, Chen J. Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Transl Stroke Res 2021;12:474-95. [PMID: 33128703 DOI: 10.1007/s12975-020-00857-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
50 Limatola C, Ransohoff RM. Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci 2014;8:229. [PMID: 25152714 DOI: 10.3389/fncel.2014.00229] [Cited by in Crossref: 125] [Cited by in F6Publishing: 134] [Article Influence: 15.6] [Reference Citation Analysis]
51 Mendiola AS, Church KA, Cardona SM, Vanegas D, Garcia SA, Macklin W, Lira SA, Ransohoff RM, Kokovay E, Lin CA, Cardona AE. Defective fractalkine-CX3CR1 signaling aggravates neuroinflammation and affects recovery from cuprizone-induced demyelination. J Neurochem 2022. [PMID: 35560167 DOI: 10.1111/jnc.15616] [Reference Citation Analysis]
52 Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 2013;3:130181. [PMID: 24352739 DOI: 10.1098/rsob.130181] [Cited by in Crossref: 187] [Cited by in F6Publishing: 179] [Article Influence: 20.8] [Reference Citation Analysis]
53 Watson AES, de Almeida MMA, Dittmann NL, Li Y, Torabi P, Footz T, Vetere G, Galleguillos D, Sipione S, Cardona AE, Voronova A. Fractalkine signaling regulates oligodendroglial cell genesis from SVZ precursor cells. Stem Cell Reports 2021;16:1968-84. [PMID: 34270934 DOI: 10.1016/j.stemcr.2021.06.010] [Reference Citation Analysis]
54 Break TJ, Jaeger M, Solis NV, Filler SG, Rodriguez CA, Lim JK, Lee CC, Sobel JD, Netea MG, Lionakis MS. CX3CR1 is dispensable for control of mucosal Candida albicans infections in mice and humans. Infect Immun 2015;83:958-65. [PMID: 25547797 DOI: 10.1128/IAI.02604-14] [Cited by in Crossref: 26] [Cited by in F6Publishing: 21] [Article Influence: 3.3] [Reference Citation Analysis]
55 McPherson SW, Heuss ND, Lehmann U, Roehrich H, Abedin M, Gregerson DS. The retinal environment induces microglia-like properties in recruited myeloid cells. J Neuroinflammation 2019;16:151. [PMID: 31325968 DOI: 10.1186/s12974-019-1546-9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]