BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gubatan J, Levitte S, Patel A, Balabanis T, Wei MT, Sinha SR. Artificial intelligence applications in inflammatory bowel disease: Emerging technologies and future directions. World J Gastroenterol 2021; 27(17): 1920-1935 [PMID: 34007130 DOI: 10.3748/wjg.v27.i17.1920] [Cited by in CrossRef: 23] [Cited by in F6Publishing: 16] [Article Influence: 23.0] [Reference Citation Analysis]
Number Citing Articles
1 Yang LS, Perry E, Shan L, Wilding H, Connell W, Thompson AJ, Taylor ACF, Desmond PV, Holt BA. Clinical application and diagnostic accuracy of artificial intelligence in colonoscopy for inflammatory bowel disease: systematic review. Endosc Int Open 2022;10:E1004-13. [PMID: 35845028 DOI: 10.1055/a-1846-0642] [Reference Citation Analysis]
2 Stibbe JA, Hoogland P, Achterberg FB, Holman DR, Sojwal RS, Burggraaf J, Vahrmeijer AL, Nagengast WB, Rogalla S. Highlighting the Undetectable - Fluorescence Molecular Imaging in Gastrointestinal Endoscopy. Mol Imaging Biol 2022. [PMID: 35764908 DOI: 10.1007/s11307-022-01741-1] [Reference Citation Analysis]
3 Zhang L, Mao R, Lau CT, Chung WC, Chan JCP, Liang F, Zhao C, Zhang X, Bian Z. Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods. Sci Rep 2022;12:9962. [PMID: 35705632 DOI: 10.1038/s41598-022-14048-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Al-Biltagi M, Saeed NK, Qaraghuli S. Gastrointestinal disorders in children with autism: Could artificial intelligence help? Artif Intell Gastroenterol 2022; 3(1): 1-12 [DOI: 10.35712/aig.v3.i1.1] [Reference Citation Analysis]
5 Marques KF, Marques AF, Lopes MA, Beraldo RF, Lima TB, Sassaki LY. Artificial intelligence in colorectal cancer screening in patients with inflammatory bowel disease. Artif Intell Gastrointest Endosc 2022; 3(1): 1-8 [DOI: 10.37126/aige.v3.i1.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Brooks-warburton J, Ashton J, Dhar A, Tham T, Allen PB, Hoque S, Lovat LB, Sebastian S. Artificial intelligence and inflammatory bowel disease: practicalities and future prospects. Frontline Gastroenterol. [DOI: 10.1136/flgastro-2021-102003] [Reference Citation Analysis]
7 Lu J, Wang Z, Maimaiti M, Hui W, Abudourexiti A, Gao F. Identification of diagnostic signatures in ulcerative colitis patients via bioinformatic analysis integrated with machine learning. Hum Cell 2021. [PMID: 34731452 DOI: 10.1007/s13577-021-00641-w] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Kraszewski S, Szczurek W, Szymczak J, Reguła M, Neubauer K. Machine Learning Prediction Model for Inflammatory Bowel Disease Based on Laboratory Markers. Working Model in a Discovery Cohort Study. J Clin Med 2021;10:4745. [PMID: 34682868 DOI: 10.3390/jcm10204745] [Reference Citation Analysis]
9 Ricci L, Toussaint Y, Becker J, Najjar H, Renier A, Choukour M, Buisson A, Devos C, Epstein J, Peyrin Biroulet L, Guillemin F. Web-based and machine learning approaches for identification of patient-reported outcomes in inflammatory bowel disease. Dig Liver Dis 2021:S1590-8658(21)00774-X. [PMID: 34588153 DOI: 10.1016/j.dld.2021.09.005] [Reference Citation Analysis]
10 Bedrikovetski S, Dudi-Venkata NN, Kroon HM, Seow W, Vather R, Carneiro G, Moore JW, Sammour T. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis. BMC Cancer 2021;21:1058. [PMID: 34565338 DOI: 10.1186/s12885-021-08773-w] [Reference Citation Analysis]
11 Majidova K, Handfield J, Kafi K, Martin RD, Kubinski R. Role of Digital Health and Artificial Intelligence in Inflammatory Bowel Disease: A Scoping Review. Genes (Basel) 2021;12:1465. [PMID: 34680860 DOI: 10.3390/genes12101465] [Reference Citation Analysis]
12 Stankovic B, Kotur N, Nikcevic G, Gasic V, Zukic B, Pavlovic S. Machine Learning Modeling from Omics Data as Prospective Tool for Improvement of Inflammatory Bowel Disease Diagnosis and Clinical Classifications. Genes (Basel) 2021;12:1438. [PMID: 34573420 DOI: 10.3390/genes12091438] [Reference Citation Analysis]
13 Gubatan J, Keyashian K, Rubin SJS, Wang J, Buckman CA, Sinha S. Anti-Integrins for the Treatment of Inflammatory Bowel Disease: Current Evidence and Perspectives. Clin Exp Gastroenterol 2021;14:333-42. [PMID: 34466013 DOI: 10.2147/CEG.S293272] [Cited by in Crossref: 4] [Cited by in F6Publishing: 1] [Article Influence: 4.0] [Reference Citation Analysis]
14 Yoo BS, D'Souza SM, Houston K, Patel A, Lau J, Elmahdi A, Parekh PJ, Johnson D. Artificial intelligence and colonoscopy − enhancements and improvements. Artif Intell Gastrointest Endosc 2021; 2(4): 157-167 [DOI: 10.37126/aige.v2.i4.157] [Reference Citation Analysis]
15 Shah N, Jyala A, Patel H, Makker J. Utility of artificial intelligence in colonoscopy. Artif Intell Gastrointest Endosc 2021; 2(3): 79-88 [DOI: 10.37126/aige.v2.i3.79] [Reference Citation Analysis]
16 Shah N, Jyala A, Patel H, Makker J. Utility of artificial intelligence in colonoscopy. AIGE 2021;2:78-87. [DOI: 10.37126/aige.v2.i3.78] [Reference Citation Analysis]