BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: González-Mora A, Hernández-Pérez J, Iqbal HMN, Rito-Palomares M, Benavides J. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines (Basel) 2020;8:E504. [PMID: 32899720 DOI: 10.3390/vaccines8030504] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
Number Citing Articles
1 Ul Haq I, Krukiewicz K, Yahya G, Haq MU, Maryam S, Mosbah RA, Saber S, Alrouji M. The Breadth of Bacteriophages Contributing to the Development of the Phage-Based Vaccines for COVID-19: An Ideal Platform to Design the Multiplex Vaccine. Int J Mol Sci 2023;24. [PMID: 36675046 DOI: 10.3390/ijms24021536] [Reference Citation Analysis]
2 Jamaledin R, Sartorius R, Di Natale C, Onesto V, Manco R, Mollo V, Vecchione R, De Berardinis P, Netti PA. PLGA microparticle formulations for tunable delivery of a nano-engineered filamentous bacteriophage-based vaccine: in vitro and in silico-supported approach. J Nanostructure Chem 2023;:1-16. [PMID: 36687278 DOI: 10.1007/s40097-022-00519-9] [Reference Citation Analysis]
3 Xu H, Li L, Li R, Guo Z, Lin M, Lu Y, Hou J, Govinden R, Deng B, Chenia HY. Evaluation of dendritic cell-targeting T7 phages as a vehicle to deliver avian influenza virus H5 DNA vaccine in SPF chickens. Front Immunol 2022;13:1063129. [PMID: 36591272 DOI: 10.3389/fimmu.2022.1063129] [Reference Citation Analysis]
4 Mahler M, Costa AR, van Beljouw SPB, Fineran PC, Brouns SJJ. Approaches for bacteriophage genome engineering. Trends Biotechnol 2022:S0167-7799(22)00226-8. [PMID: 36117025 DOI: 10.1016/j.tibtech.2022.08.008] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Allen GL, Grahn AK, Kourentzi K, Willson RC, Waldrop S, Guo J, Kay BK. Expanding the chemical diversity of M13 bacteriophage. Front Microbiol 2022;13:961093. [DOI: 10.3389/fmicb.2022.961093] [Reference Citation Analysis]
6 Lam FC, Tsedev U, Kasper EM, Belcher AM. Forging the Frontiers of Image-Guided Neurosurgery—The Emerging Uses of Theranostics in Neurosurgical Oncology. Front Bioeng Biotechnol 2022;10:857093. [DOI: 10.3389/fbioe.2022.857093] [Reference Citation Analysis]
7 Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022;:e12435. [PMID: 35620963 DOI: 10.15252/emmm.202012435] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
8 Piekarowicz A, Kłyż A, Stein DC. A New Vaccination Method Based on Phage NgoΦ6 and Its Phagemid Derivatives. Front Microbiol 2022;13:793205. [PMID: 35572628 DOI: 10.3389/fmicb.2022.793205] [Reference Citation Analysis]
9 Bates M. Leveraging Bacteriophages in Vaccine Development. IEEE Pulse 2022;13:9-13. [DOI: 10.1109/mpuls.2022.3175351] [Reference Citation Analysis]
10 Wang Y, Zhang G, Zhong L, Qian M, Wang M, Cui R. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies. Nanoscale 2022;14:5942-59. [PMID: 35389413 DOI: 10.1039/d1nr08064d] [Reference Citation Analysis]
11 Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines 2022;10:608. [DOI: 10.3390/vaccines10040608] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
12 Khan A, Ostaku J, Aras E, Safak Seker UO. Combating Infectious Diseases with Synthetic Biology. ACS Synth Biol 2022;11:528-37. [PMID: 35077138 DOI: 10.1021/acssynbio.1c00576] [Reference Citation Analysis]
13 Zebrowska J, Witkowska M, Struck A, Laszuk PE, Raczuk E, Ponikowska M, Skowron PM, Zylicz-stachula A. Antimicrobial Potential of the Genera Geobacillus and Parageobacillus, as Well as Endolysins Biosynthesized by Their Bacteriophages. Antibiotics 2022;11:242. [DOI: 10.3390/antibiotics11020242] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
14 Gautam V, Maurya PK. Emerging trends in vaccine delivery systems. System Vaccinology 2022. [DOI: 10.1016/b978-0-323-85941-7.00020-6] [Reference Citation Analysis]
15 González-Mora A, Calvillo-Rodríguez KM, Hernández-Pérez J, Rito-Palomares M, Martínez-Torres AC, Benavides J. Evaluation of the Immune Response of a Candidate Phage-Based Vaccine against Rhipicephalus microplus (Cattle Tick). Pharmaceutics 2021;13:2018. [PMID: 34959300 DOI: 10.3390/pharmaceutics13122018] [Reference Citation Analysis]
16 Freeman KG, Wetzel KS, Zhang Y, Zack KM, Jacobs-Sera D, Walters SM, Barbeau DJ, McElroy AK, Williams JV, Hatfull GF. A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms 2021;9:2414. [PMID: 34946016 DOI: 10.3390/microorganisms9122414] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
17 Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021;:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
18 Wang Y, Sheng J, Chai J, Zhu C, Li X, Yang W, Cui R, Ge T. Filamentous Bacteriophage-A Powerful Carrier for Glioma Therapy. Front Immunol 2021;12:729336. [PMID: 34566987 DOI: 10.3389/fimmu.2021.729336] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, Contessoto VG, Davis D, O'Brien P, Habib N, Smith TL, Bruiners N, Sidman RL, Gennaro ML, Lattime EC, Libutti SK, Whitford PC, Burley SK, Onuchic JN, Arap W, Pasqualini R. Design and proof of concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. Proc Natl Acad Sci U S A 2021;118:e2105739118. [PMID: 34234013 DOI: 10.1073/pnas.2105739118] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
20 Zalewska-Piątek B, Piątek R. Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development. Pharmaceuticals (Basel) 2021;14:331. [PMID: 33916345 DOI: 10.3390/ph14040331] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
21 Staquicini DI, Tang FHF, Markosian C, Yao VJ, Staquicini FI, Dodero-Rojas E, Contessoto VG, Davis D, O'Brien P, Habib N, Smith TL, Bruiners N, Sidman RL, Gennaro ML, Lattime EC, Libutti SK, Whitford PC, Burley SK, Onuchic JN, Arap W, Pasqualini R. Design and proof-of-concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain. bioRxiv 2021:2021. [PMID: 33758865 DOI: 10.1101/2021.03.15.435496] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 de Vries CR, Chen Q, Demirdjian S, Kaber G, Khosravi A, Liu D, Van Belleghem JD, Bollyky PL. Phages in vaccine design and immunity; mechanisms and mysteries. Curr Opin Biotechnol 2021;68:160-5. [PMID: 33316575 DOI: 10.1016/j.copbio.2020.11.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]