BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bello-Morales R, Ripa I, López-Guerrero JA. Extracellular Vesicles in Viral Spread and Antiviral Response. Viruses 2020;12:E623. [PMID: 32521696 DOI: 10.3390/v12060623] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Moulin C, Crupi MJF, Ilkow CS, Bell JC, Boulton S. Extracellular Vesicles and Viruses: Two Intertwined Entities. Int J Mol Sci 2023;24. [PMID: 36674550 DOI: 10.3390/ijms24021036] [Reference Citation Analysis]
2 Rojas K, Verdugo-Molinares MG, Ochoa-Ruiz AG, Canales A, Reza-Zaldivar EE, Limón-Rojas A, Vallejo-Cardona AA. Approximations to Diagnosis and Therapy of COVID-19 in Nervous Systems Using Extracellular Vesicles. Pathogens 2022;11. [PMID: 36558835 DOI: 10.3390/pathogens11121501] [Reference Citation Analysis]
3 Ripa I, Andreu S, López-guerrero JA, Bello-morales R. Interplay between Autophagy and Herpes Simplex Virus Type 1: ICP34.5, One of the Main Actors. IJMS 2022;23:13643. [DOI: 10.3390/ijms232113643] [Reference Citation Analysis]
4 Le BCT, Burassakarn A, Tongchai P, Ekalaksananan T, Aromseree S, Phanthanawiboon S, Polsan Y, Alexander N, Overgaard HJ, Pientong C. Characterization and Involvement of Exosomes Originating from Chikungunya Virus-Infected Epithelial Cells in the Transmission of Infectious Viral Elements. IJMS 2022;23:12117. [DOI: 10.3390/ijms232012117] [Reference Citation Analysis]
5 Chen Y, Wang T, Yang Y, Fang Y, Zhao B, Zeng W, Lv D, Zhang L, Zhang Y, Xue Q, Chen X, Wang J, Qi X. Extracellular vesicles derived from PPRV-infected cells enhance signaling lymphocyte activation molecular (SLAM) receptor expression and facilitate virus infection. PLoS Pathog 2022;18:e1010759. [DOI: 10.1371/journal.ppat.1010759] [Reference Citation Analysis]
6 Sbarigia C, Vardanyan D, Buccini L, Tacconi S, Dini L. SARS-CoV-2 and extracellular vesicles: An intricate interplay in pathogenesis, diagnosis and treatment. Front Nanotechnol 2022;4. [DOI: 10.3389/fnano.2022.987034] [Reference Citation Analysis]
7 Sawaged S, Mota T, Piplani H, Thakur R, Lall D, Mccabe E, Seo S, Sutterwala FS, Feuer R, Gottlieb RA, Sin J. TBK1 and GABARAP family members suppress Coxsackievirus B infection by limiting viral production and promoting autophagic degradation of viral extracellular vesicles. PLoS Pathog 2022;18:e1010350. [DOI: 10.1371/journal.ppat.1010350] [Reference Citation Analysis]
8 Srivastava BBL, Ripanda AS, Mwanga HM. Ethnomedicinal, Phytochemistry and Antiviral Potential of Turmeric (Curcuma longa). Compounds 2022;2:200-221. [DOI: 10.3390/compounds2030017] [Reference Citation Analysis]
9 Park JW, Wang X, Xu RH. Revealing the mystery of persistent smell loss in Long COVID patients. Int J Biol Sci 2022;18:4795-808. [PMID: 35874953 DOI: 10.7150/ijbs.73485] [Reference Citation Analysis]
10 Ebeyer-Masotta M, Eichhorn T, Weiss R, Lauková L, Weber V. Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis. Front Cell Dev Biol 2022;10:914891. [PMID: 35874830 DOI: 10.3389/fcell.2022.914891] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
11 Cao H, Abd Aziz NH, Xavier JR, Shafiee MN, Kalok A, Jee B, Salker MS, Singh Y. Dysregulated Exosomes Result in Suppression of the Immune Response of Pregnant COVID-19 Convalescent Women. Front Mol Biosci 2022;9:869192. [DOI: 10.3389/fmolb.2022.869192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Hu Z, Yang L, Han J, Liu Z, Zhao Y, Jin Y, Sheng Y, Zhu L, Hu B. Human viruses lurking in the environment activated by excessive use of COVID-19 prevention supplies. Environment International 2022;163:107192. [DOI: 10.1016/j.envint.2022.107192] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Ma Y, Li J, Dong H, Yang Z, Zhou L, Xu P. PML Body Component Sp100A Restricts Wild-Type Herpes Simplex Virus 1 Infection. J Virol 2022;:e0027922. [PMID: 35353002 DOI: 10.1128/jvi.00279-22] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wan Y, Chen Y, Wang T, Zhao B, Zeng W, Zhang L, Zhang Y, Cao S, Wang J, Xue Q, Qi X. PPRV-Induced Autophagy Facilitates Infectious Virus Transmission by the Exosomal Pathway. J Virol 2022;:e0024422. [PMID: 35319226 DOI: 10.1128/jvi.00244-22] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
15 Desingu PA, Nagarajan K, Dhama K. Can a Torque Teno Virus (TTV) Be a Naked DNA Particle Without a Virion Structure? Front Virol 2022;2. [DOI: 10.3389/fviro.2022.821298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Mojtaba E, Zeinab Y, Mohamad Reza M, Mehdi R. Risk of activation of human viruses lurking in ambient following COVID-19 prevention supplies excessive use. J Community Med Health Solut 2022;3:011-015. [DOI: 10.29328/journal.jcmhs.1001014] [Reference Citation Analysis]
17 O'Dowd K, Sánchez L, Ben Salem J, Beaudry F, Barjesteh N. Characterization of the Role of Extracellular Vesicles Released from Chicken Tracheal Cells in the Antiviral Responses against Avian Influenza Virus. Membranes (Basel) 2021;12:53. [PMID: 35054579 DOI: 10.3390/membranes12010053] [Reference Citation Analysis]
18 Azevedo CAB, da Cunha RS, Junho CVC, da Silva JV, Moreno-Amaral AN, de Moraes TP, Carneiro-Ramos MS, Stinghen AEM. Extracellular Vesicles and Their Relationship with the Heart-Kidney Axis, Uremia and Peritoneal Dialysis. Toxins (Basel) 2021;13:778. [PMID: 34822562 DOI: 10.3390/toxins13110778] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 He J, Chen NN, Li ZM, Wang YY, Weng SP, Guo CJ, He JG. Evidence for a Novel Antiviral Mechanism of Teleost Fish: Serum-Derived Exosomes Inhibit Virus Replication through Incorporating Mx1 Protein. Int J Mol Sci 2021;22:10346. [PMID: 34638687 DOI: 10.3390/ijms221910346] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
20 Kongsomros S, Suksatu A, Kanjanasirirat P, Manopwisedjaroen S, Prasongtanakij S, Jearawuttanakul K, Borwornpinyo S, Hongeng S, Thitithanyanont A, Chutipongtanate S. Anti-SARS-CoV-2 Activity of Extracellular Vesicle Inhibitors: Screening, Validation, and Combination with Remdesivir. Biomedicines 2021;9:1230. [PMID: 34572416 DOI: 10.3390/biomedicines9091230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
21 Logozzi M, Di Raimo R, Mizzoni D, Fais S. What we know on the potential use of exosomes for nanodelivery. Semin Cancer Biol 2021:S1044-579X(21)00229-7. [PMID: 34517111 DOI: 10.1016/j.semcancer.2021.09.005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
22 Siqueira IR, Palazzo RP, Cechinel LR. Circulating extracellular vesicles delivering beneficial cargo as key players in exercise effects. Free Radic Biol Med 2021;172:273-85. [PMID: 34119583 DOI: 10.1016/j.freeradbiomed.2021.06.007] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
23 Nunez Lopez YO, Casu A, Pratley RE. Investigation of Extracellular Vesicles From SARS-CoV-2 Infected Specimens: A Safety Perspective. Front Immunol 2021;12:617042. [PMID: 33968019 DOI: 10.3389/fimmu.2021.617042] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
24 Anand K, Chandrasekaran B, Gupta G, Dureja H, Singh SK, Gulati M, Chellappan DK, Balasubramanian B, Femeela I, Arumugam VA, Dua K. Biosynthetic exosome nanoparticles isolation, characterization, and their diagnostic and therapeutic applications. Advanced Drug Delivery Systems in the Management of Cancer 2021. [DOI: 10.1016/b978-0-323-85503-7.00037-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
25 Yim KHW, Al Hrout A, Borgoni S, Chahwan R. Extracellular Vesicles Orchestrate Immune and Tumor Interaction Networks. Cancers (Basel) 2020;12:E3696. [PMID: 33317058 DOI: 10.3390/cancers12123696] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
26 López-Guerrero JA, Ripa I, Andreu S, Bello-Morales R. The Role of Extracellular Vesicles in Demyelination of the Central Nervous System. Int J Mol Sci 2020;21:E9111. [PMID: 33266211 DOI: 10.3390/ijms21239111] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
27 Howard TR, Cristea IM. Interrogating Host Antiviral Environments Driven by Nuclear DNA Sensing: A Multiomic Perspective. Biomolecules 2020;10:E1591. [PMID: 33255247 DOI: 10.3390/biom10121591] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
28 Okeoma CM. Viruses and Extracellular Vesicles: Special Issue, 2020, with Thirteen Articles by Chioma M. Okeoma. Viruses 2020;12:E1265. [PMID: 33172073 DOI: 10.3390/v12111265] [Reference Citation Analysis]
29 Estrada E. Protein-driven mechanism of multiorgan damage in COVID-19. Med Drug Discov 2020;:100069. [PMID: 33103107 DOI: 10.1016/j.medidd.2020.100069] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
30 McNamara RP, Dittmer DP. Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 2020;44:129-38. [PMID: 32846272 DOI: 10.1016/j.coviro.2020.07.014] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]