BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 2014;6:3488-551. [PMID: 25533518 DOI: 10.3390/toxins6123488] [Cited by in Crossref: 70] [Cited by in F6Publishing: 56] [Article Influence: 8.8] [Reference Citation Analysis]
Number Citing Articles
1 Tilic E, Pauli B, Bartolomaeus T. Getting to the root of fireworms' stinging chaetae-chaetal arrangement and ultrastructure of Eurythoe complanata (Pallas, 1766) (Amphinomida). J Morphol 2017;278:865-76. [PMID: 28370192 DOI: 10.1002/jmor.20680] [Cited by in Crossref: 12] [Article Influence: 2.4] [Reference Citation Analysis]
2 Sunagar K, Morgenstern D, Reitzel AM, Moran Y. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J Proteomics 2016;135:62-72. [PMID: 26385003 DOI: 10.1016/j.jprot.2015.09.015] [Cited by in Crossref: 50] [Cited by in F6Publishing: 47] [Article Influence: 7.1] [Reference Citation Analysis]
3 Barkan NP, Chevalier M, Pradervand JN, Guisan A. Alteration of Bumblebee Venom Composition toward Higher Elevation. Toxins (Basel) 2019;12:E4. [PMID: 31861682 DOI: 10.3390/toxins12010004] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
4 Walker AA, Robinson SD, Yeates DK, Jin J, Baumann K, Dobson J, Fry BG, King GF. Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon 2018;154:15-27. [DOI: 10.1016/j.toxicon.2018.09.004] [Cited by in Crossref: 32] [Cited by in F6Publishing: 25] [Article Influence: 8.0] [Reference Citation Analysis]
5 Drukewitz SH, Fuhrmann N, Undheim EAB, Blanke A, Giribaldi J, Mary R, Laconde G, Dutertre S, von Reumont BM. A Dipteran's Novel Sucker Punch: Evolution of Arthropod Atypical Venom with a Neurotoxic Component in Robber Flies (Asilidae, Diptera). Toxins (Basel) 2018;10:E29. [PMID: 29303983 DOI: 10.3390/toxins10010029] [Cited by in Crossref: 26] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
6 Tilic E, Bartolomaeus T. Commentary on: "Unravelling the ultrastructure and mineralogical composition of fireworm stinging bristles" by Righi et al. 2020. Zoology (Jena) 2021;144:125890. [PMID: 33451887 DOI: 10.1016/j.zool.2020.125890] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
7 Verdes A, Anand P, Gorson J, Jannetti S, Kelly P, Leffler A, Simpson D, Ramrattan G, Holford M. From Mollusks to Medicine: A Venomics Approach for the Discovery and Characterization of Therapeutics from Terebridae Peptide Toxins. Toxins (Basel) 2016;8:117. [PMID: 27104567 DOI: 10.3390/toxins8040117] [Cited by in Crossref: 29] [Cited by in F6Publishing: 23] [Article Influence: 4.8] [Reference Citation Analysis]
8 Touchard A, Brust A, Cardoso FC, Chin YK, Herzig V, Jin AH, Dejean A, Alewood PF, King GF, Orivel J, Escoubas P. Isolation and characterization of a structurally unique β-hairpin venom peptide from the predatory ant Anochetus emarginatus. Biochim Biophys Acta 2016;1860:2553-62. [PMID: 27474999 DOI: 10.1016/j.bbagen.2016.07.027] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
9 Verdes A, Holford M. Beach to Bench to Bedside: Marine Invertebrate Biochemical Adaptations and Their Applications in Biotechnology and Biomedicine. In: Kloc M, Kubiak JZ, editors. Marine Organisms as Model Systems in Biology and Medicine. Cham: Springer International Publishing; 2018. pp. 359-76. [DOI: 10.1007/978-3-319-92486-1_17] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
10 Jacobsson E, Peigneur S, Andersson HS, Laborde Q, Strand M, Tytgat J, Göransson U. Functional Characterization of the Nemertide α Family of Peptide Toxins. J Nat Prod 2021;84:2121-8. [PMID: 34445875 DOI: 10.1021/acs.jnatprod.1c00104] [Reference Citation Analysis]
11 Lüddecke T, Vilcinskas A. Heilen mit Tiergiften: Tödliche Waffen des Tierreichs zur Therapie von Krankheiten nutzbar machen. Chem Unserer Zeit. [DOI: 10.1002/ciuz.202100005] [Reference Citation Analysis]
12 Lüddecke T, Vilcinskas A, Lemke S. Phylogeny-Guided Selection of Priority Groups for Venom Bioprospecting: Harvesting Toxin Sequences in Tarantulas as a Case Study. Toxins (Basel) 2019;11:E488. [PMID: 31450685 DOI: 10.3390/toxins11090488] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
13 Rodrigo AP, Costa PM. The hidden biotechnological potential of marine invertebrates: The Polychaeta case study. Environ Res 2019;173:270-80. [PMID: 30928858 DOI: 10.1016/j.envres.2019.03.048] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
14 Holford M, Daly M, King GF, Norton RS. Venoms to the rescue. Science 2018;361:842-4. [PMID: 30166472 DOI: 10.1126/science.aau7761] [Cited by in Crossref: 39] [Cited by in F6Publishing: 30] [Article Influence: 9.8] [Reference Citation Analysis]
15 Herzig V. Arthropod assassins: Crawling biochemists with diverse toxin pharmacopeias. Toxicon 2019;158:33-7. [PMID: 30496730 DOI: 10.1016/j.toxicon.2018.11.312] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 2.8] [Reference Citation Analysis]
16 von Reumont BM. Studying Smaller and Neglected Organisms in Modern Evolutionary Venomics Implementing RNASeq (Transcriptomics)-A Critical Guide. Toxins (Basel) 2018;10:E292. [PMID: 30012955 DOI: 10.3390/toxins10070292] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
17 Richter S, Helm C, Meunier FA, Hering L, Campbell LI, Drukewitz SH, Undheim EA, Jenner RA, Schiavo G, Bleidorn C. Comparative analyses of glycerotoxin expression unveil a novel structural organization of the bloodworm venom system. BMC Evol Biol 2017;17:64. [PMID: 28259138 DOI: 10.1186/s12862-017-0904-4] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
18 Senji Laxme RR, Suranse V, Sunagar K. Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2019;158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 3.3] [Reference Citation Analysis]
19 Salvador RB, Tomotani BM, O’donnell KL, Cavallari DC, Tomotani JV, Salmon RA, Kasper J. Invertebrates in Science Communication: Confronting Scientists’ Practices and the Public’s Expectations. Front Environ Sci 2021;9:606416. [DOI: 10.3389/fenvs.2021.606416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Calvete JJ. The challenge of integrating proximate and ultimate causes to reconstruct the natural histories of venoms: the evolutionary link. Expert Rev Proteomics 2016;13:1059-61. [PMID: 27678017 DOI: 10.1080/14789450.2017.1242416] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
21 Kelly P, Anand P, Uvaydov A, Chakravartula S, Sherpa C, Pires E, O'Neil A, Douglas T, Holford M. Developing a Dissociative Nanocontainer for Peptide Drug Delivery. Int J Environ Res Public Health 2015;12:12543-55. [PMID: 26473893 DOI: 10.3390/ijerph121012543] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 2.0] [Reference Citation Analysis]
22 Lüddecke T, Paas A, Talmann L, Kirchhoff KN, von Reumont BM, Billion A, Timm T, Lochnit G, Vilcinskas A. A Spider Toxin Exemplifies the Promises and Pitfalls of Cell-Free Protein Production for Venom Biodiscovery. Toxins (Basel) 2021;13:575. [PMID: 34437446 DOI: 10.3390/toxins13080575] [Reference Citation Analysis]
23 Michálek O, Kuhn-Nentwig L, Pekár S. High Specific Efficiency of Venom of Two Prey-Specialized Spiders. Toxins (Basel) 2019;11:E687. [PMID: 31771158 DOI: 10.3390/toxins11120687] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
24 Touchard A, Téné N, Song PCT, Lefranc B, Leprince J, Treilhou M, Bonnafé E. Deciphering the Molecular Diversity of an Ant Venom Peptidome through a Venomics Approach. J Proteome Res 2018;17:3503-16. [DOI: 10.1021/acs.jproteome.8b00452] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 2.5] [Reference Citation Analysis]
25 Klupczynska A, Pawlak M, Kokot ZJ, Matysiak J. Application of Metabolomic Tools for Studying Low Molecular-Weight Fraction of Animal Venoms and Poisons. Toxins (Basel) 2018;10:E306. [PMID: 30042318 DOI: 10.3390/toxins10080306] [Cited by in Crossref: 10] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
26 Walker AA. The evolutionary dynamics of venom toxins made by insects and other animals. Biochem Soc Trans 2020;48:1353-65. [PMID: 32756910 DOI: 10.1042/BST20190820] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
27 Hauke TJ, Herzig V. Dangerous arachnids-Fake news or reality? Toxicon 2017;138:173-83. [PMID: 28866287 DOI: 10.1016/j.toxicon.2017.08.024] [Cited by in Crossref: 35] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
28 Drukewitz SH, von Reumont BM. The Significance of Comparative Genomics in Modern Evolutionary Venomics. Front Ecol Evol 2019;7:163. [DOI: 10.3389/fevo.2019.00163] [Cited by in Crossref: 18] [Cited by in F6Publishing: 2] [Article Influence: 6.0] [Reference Citation Analysis]
29 Kowalski K, Rychlik L. Venom Use in Eulipotyphlans: An Evolutionary and Ecological Approach. Toxins (Basel) 2021;13:231. [PMID: 33810196 DOI: 10.3390/toxins13030231] [Reference Citation Analysis]
30 Kaji T, Song C, Murata K, Nonaka S, Ogawa K, Kondo Y, Ohtsuka S, Palmer AR. Evolutionary transformation of mouthparts from particle-feeding to piercing carnivory in Viper copepods: Review and 3D analyses of a key innovation using advanced imaging techniques. Front Zool 2019;16:35. [PMID: 31440302 DOI: 10.1186/s12983-019-0308-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
31 AmbuAli A, Monaghan SJ, McLean K, Inglis NF, Bekaert M, Wehner S, Bron JE. Identification of proteins from the secretory/excretory products (SEPs) of the branchiuran ectoparasite Argulus foliaceus (Linnaeus, 1758) reveals unique secreted proteins amongst haematophagous ecdysozoa. Parasit Vectors 2020;13:88. [PMID: 32070416 DOI: 10.1186/s13071-020-3964-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
32 Verdes A, Simpson D, Holford M. Are Fireworms Venomous? Evidence for the Convergent Evolution of Toxin Homologs in Three Species of Fireworms (Annelida, Amphinomidae). Genome Biol Evol 2018;10:249-68. [PMID: 29293976 DOI: 10.1093/gbe/evx279] [Cited by in Crossref: 20] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
33 Rádis-Baptista G, Konno K. Toxinologic and Pharmacological Investigation of Venomous Arthropods. Toxins (Basel) 2022;14:283. [PMID: 35448892 DOI: 10.3390/toxins14040283] [Reference Citation Analysis]
34 Touchard A, Aili SR, Fox EG, Escoubas P, Orivel J, Nicholson GM, Dejean A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins (Basel) 2016;8:E30. [PMID: 26805882 DOI: 10.3390/toxins8010030] [Cited by in Crossref: 68] [Cited by in F6Publishing: 53] [Article Influence: 11.3] [Reference Citation Analysis]
35 Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks and Tick-borne Diseases 2016;7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Cited by in Crossref: 43] [Cited by in F6Publishing: 36] [Article Influence: 7.2] [Reference Citation Analysis]
36 Amorim FG, Costa TR, Baiwir D, De Pauw E, Quinton L, Sampaio SV. Proteopeptidomic, Functional and Immunoreactivity Characterization of Bothrops moojeni Snake Venom: Influence of Snake Gender on Venom Composition. Toxins (Basel) 2018;10:E177. [PMID: 29701671 DOI: 10.3390/toxins10050177] [Cited by in Crossref: 26] [Cited by in F6Publishing: 22] [Article Influence: 6.5] [Reference Citation Analysis]
37 Malhotra A. Mutation, Duplication, and More in the Evolution of Venomous Animals and Their Toxins. In: Malhotra A, editor. Evolution of Venomous Animals and Their Toxins. Dordrecht: Springer Netherlands; 2017. pp. 33-45. [DOI: 10.1007/978-94-007-6458-3_5] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
38 Yamamori L, Kato M. Shift of Feeding Mode in an Epizoic Stalked Barnacle Inducing Gall Formation of Host Sea Urchin. iScience 2020;23:100885. [PMID: 32105636 DOI: 10.1016/j.isci.2020.100885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Ambuali A, Monaghan SJ, Al-adawi K, Al-kindi M, Bron JE. Histological and histochemical characterisation of glands associated with the feeding appendages of Argulus foliaceus (Linnaeus, 1758). Parasitology International 2019;69:82-92. [DOI: 10.1016/j.parint.2018.12.002] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 von Reumont BM, Undheim EAB, Jauss RT, Jenner RA. Venomics of Remipede Crustaceans Reveals Novel Peptide Diversity and Illuminates the Venom's Biological Role. Toxins (Basel) 2017;9:E234. [PMID: 28933727 DOI: 10.3390/toxins9080234] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
41 Undheim EA, Fry BG, King GF. Centipede venom: recent discoveries and current state of knowledge. Toxins (Basel) 2015;7:679-704. [PMID: 25723324 DOI: 10.3390/toxins7030679] [Cited by in Crossref: 57] [Cited by in F6Publishing: 50] [Article Influence: 8.1] [Reference Citation Analysis]
42 Undheim EA, Jenner RA, King GF. Centipede venoms as a source of drug leads. Expert Opin Drug Discov 2016;11:1139-49. [PMID: 27611363 DOI: 10.1080/17460441.2016.1235155] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 3.5] [Reference Citation Analysis]
43 Drukewitz SH, Bokelmann L, Undheim EAB, von Reumont BM. Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects. Gigascience 2019;8:giz081. [PMID: 31289835 DOI: 10.1093/gigascience/giz081] [Cited by in Crossref: 13] [Cited by in F6Publishing: 10] [Article Influence: 6.5] [Reference Citation Analysis]
44 Arbuckle K. Evolutionary Context of Venom in Animals. In: Gopalakrishnakone P, Malhotra A, editors. Evolution of Venomous Animals and Their Toxins. Dordrecht: Springer Netherlands; 2015. pp. 1-23. [DOI: 10.1007/978-94-007-6727-0_16-1] [Cited by in Crossref: 4] [Article Influence: 0.6] [Reference Citation Analysis]
45 Jin J, Agwa AJ, Szanto TG, Csóti A, Panyi G, Schroeder CI, Walker AA, King GF. Weaponisation ‘on the fly’: Convergent recruitment of knottin and defensin peptide scaffolds into the venom of predatory assassin flies. Insect Biochemistry and Molecular Biology 2020;118:103310. [DOI: 10.1016/j.ibmb.2019.103310] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
46 Dubovskii PV, Vassilevski AA, Kozlov SA, Feofanov AV, Grishin EV, Efremov RG. Latarcins: versatile spider venom peptides. Cell Mol Life Sci 2015;72:4501-22. [PMID: 26286896 DOI: 10.1007/s00018-015-2016-x] [Cited by in Crossref: 36] [Cited by in F6Publishing: 33] [Article Influence: 5.1] [Reference Citation Analysis]
47 Richter S, Schwarz F, Hering L, Böggemann M, Bleidorn C. The Utility of Genome Skimming for Phylogenomic Analyses as Demonstrated for Glycerid Relationships (Annelida, Glyceridae). Genome Biol Evol 2015;7:3443-62. [PMID: 26590213 DOI: 10.1093/gbe/evv224] [Cited by in Crossref: 38] [Cited by in F6Publishing: 24] [Article Influence: 5.4] [Reference Citation Analysis]
48 Lüddecke T, Reumont BMV, Förster F, Billion A, Timm T, Lochnit G, Vilcinskas A, Lemke S. An Economic Dilemma Between Molecular Weapon Systems May Explain an Arachno-atypical Venom in Wasp Spiders (Argiope bruennichi). Biomolecules 2020;10:E978. [PMID: 32630016 DOI: 10.3390/biom10070978] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 3.0] [Reference Citation Analysis]
49 Walker AA, Madio B, Jin J, Undheim EA, Fry BG, King GF. Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol Cell Proteomics 2017;16:552-66. [PMID: 28130397 DOI: 10.1074/mcp.M116.063321] [Cited by in Crossref: 30] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
50 Kirchhoff KN, Billion A, Voolstra CR, Kremb S, Wilke T, Vilcinskas A. Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021;20:27. [PMID: 35049882 DOI: 10.3390/md20010027] [Reference Citation Analysis]
51 Johnson SR, Rikli HG. Aspartic Acid Isomerization Characterized by High Definition Mass Spectrometry Significantly Alters the Bioactivity of a Novel Toxin from Poecilotheria. Toxins (Basel) 2020;12:E207. [PMID: 32218140 DOI: 10.3390/toxins12040207] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
52 Zhang Y. Why do we study animal toxins? Dongwuxue Yanjiu 2015;36:183-222. [PMID: 26228472 DOI: 10.13918/j.issn.2095-8137.2015.4.183] [Cited by in F6Publishing: 42] [Reference Citation Analysis]
53 Zancolli G, Casewell NR, Kelley J. Venom Systems as Models for Studying the Origin and Regulation of Evolutionary Novelties. Molecular Biology and Evolution 2020;37:2777-90. [DOI: 10.1093/molbev/msaa133] [Cited by in Crossref: 13] [Cited by in F6Publishing: 9] [Article Influence: 6.5] [Reference Citation Analysis]
54 Cohen CM, Cole TJ, Brewer MS. Pick Your Poison: Molecular Evolution of Venom Proteins in Asilidae (Insecta: Diptera). Toxins (Basel) 2020;12:E738. [PMID: 33255268 DOI: 10.3390/toxins12120738] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
55 Gorson J, Holford M. Small Packages, Big Returns: Uncovering the Venom Diversity of Small Invertebrate Conoidean Snails. Integr Comp Biol 2016;56:962-72. [PMID: 27371389 DOI: 10.1093/icb/icw063] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
56 Elias LG, Silva DB, Silva R, Peng YQ, Yang DR, Lopes NP, Pereira RAS. A comparative venomic fingerprinting approach reveals that galling and non-galling fig wasp species have different venom profiles. PLoS One 2018;13:e0207051. [PMID: 30408087 DOI: 10.1371/journal.pone.0207051] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
57 Smith WL, Stern JH, Girard MG, Davis MP. Evolution of Venomous Cartilaginous and Ray-Finned Fishes. Integr Comp Biol 2016;56:950-61. [DOI: 10.1093/icb/icw070] [Cited by in Crossref: 25] [Cited by in F6Publishing: 19] [Article Influence: 4.2] [Reference Citation Analysis]
58 Kowalski K, Marciniak P, Rosiński G, Rychlik L. Evaluation of the physiological activity of venom from the Eurasian water shrew Neomys fodiens. Front Zool 2017;14:46. [PMID: 29026428 DOI: 10.1186/s12983-017-0230-0] [Cited by in Crossref: 12] [Cited by in F6Publishing: 7] [Article Influence: 2.4] [Reference Citation Analysis]
59 Krämer J, Pohl H, Predel R. Venom collection and analysis in the pseudoscorpion Chelifer cancroides (Pseudoscorpiones: Cheliferidae). Toxicon 2019;162:15-23. [PMID: 30796931 DOI: 10.1016/j.toxicon.2019.02.009] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 3.3] [Reference Citation Analysis]
60 Arbuckle K, Harris RJ. Radiating pain: venom has contributed to the diversification of the largest radiations of vertebrate and invertebrate animals. BMC Ecol Evol 2021;21:150. [PMID: 34344322 DOI: 10.1186/s12862-021-01880-z] [Reference Citation Analysis]
61 Niermann CN, Tate TG, Suto AL, Barajas R, White HA, Guswiler OD, Secor SM, Rowe AH, Rowe MP. Defensive Venoms: Is Pain Sufficient for Predator Deterrence? Toxins (Basel) 2020;12:E260. [PMID: 32316477 DOI: 10.3390/toxins12040260] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
62 Arbuckle K. Evolutionary Context of Venom in Animals. In: Malhotra A, editor. Evolution of Venomous Animals and Their Toxins. Dordrecht: Springer Netherlands; 2017. pp. 3-31. [DOI: 10.1007/978-94-007-6458-3_16] [Cited by in Crossref: 10] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
63 Robinson SD, Undheim EAB, Ueberheide B, King GF. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Review of Proteomics 2017;14:931-9. [DOI: 10.1080/14789450.2017.1377613] [Cited by in Crossref: 58] [Cited by in F6Publishing: 46] [Article Influence: 11.6] [Reference Citation Analysis]
64 Accorsi A, Benatti S, Ross E, Nasi M, Malagoli D. A prokineticin-like protein responds to immune challenges in the gastropod pest Pomacea canaliculata. Dev Comp Immunol 2017;72:37-43. [PMID: 28163091 DOI: 10.1016/j.dci.2017.02.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]