BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Norton KA, Gong C, Jamalian S, Popel AS. Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment. Processes (Basel) 2019;7:37. [PMID: 30701168 DOI: 10.3390/pr7010037] [Cited by in Crossref: 66] [Cited by in F6Publishing: 74] [Article Influence: 16.5] [Reference Citation Analysis]
Number Citing Articles
1 Grajek J, Kather JN, Poleszczuk J. An in silico model to study the impact of carbonic anhydrase IX expression on tumour growth and anti-PD-1 therapy. J R Soc Interface 2023;20:20220654. [PMID: 36695125 DOI: 10.1098/rsif.2022.0654] [Reference Citation Analysis]
2 Cesaro G, Milia M, Baruzzo G, Finco G, Morandini F, Lazzarini A, Alotto P, da Cunha Carvalho de Miranda NF, Trajanoski Z, Finotello F, Di Camillo B. MAST: a hybrid Multi-Agent Spatio-Temporal model of tumor microenvironment informed using a data-driven approach. Bioinform Adv 2022;2:vbac092. [PMID: 36699399 DOI: 10.1093/bioadv/vbac092] [Reference Citation Analysis]
3 Vera J, Lai X, Baur A, Erdmann M, Gupta S, Guttà C, Heinzerling L, Heppt MV, Kazmierczak PM, Kunz M, Lischer C, Pützer BM, Rehm M, Ostalecki C, Retzlaff J, Witt S, Wolkenhauer O, Berking C. Melanoma 2.0. Skin cancer as a paradigm for emerging diagnostic technologies, computational modelling and artificial intelligence. Brief Bioinform 2022;23:bbac433. [PMID: 36252807 DOI: 10.1093/bib/bbac433] [Reference Citation Analysis]
4 Ledzewicz U, Schättler H. On modeling the synergy of cancer immunotherapy with radiotherapy. Communications in Nonlinear Science and Numerical Simulation 2022. [DOI: 10.1016/j.cnsns.2022.106987] [Reference Citation Analysis]
5 Giorgadze T, Fischel H, Tessier A, Norton KA. Investigating Two Modes of Cancer-Associated Antigen Heterogeneity in an Agent-Based Model of Chimeric Antigen Receptor T-Cell Therapy. Cells 2022;11:3165. [PMID: 36231127 DOI: 10.3390/cells11193165] [Reference Citation Analysis]
6 Wang X, Jenner AL, Salomone R, Drovandi C. Calibration of a Voronoi cell-based model for tumour growth using approximate Bayesian computation.. [DOI: 10.1101/2022.09.13.507714] [Reference Citation Analysis]
7 Ruiz-martinez A, Gong C, Wang H, Sové RJ, Mi H, Kimko H, Popel AS. Simulations of tumor growth and response to immunotherapy by coupling a spatial agent-based model with a whole-patient quantitative systems pharmacology model. PLoS Comput Biol 2022;18:e1010254. [DOI: 10.1371/journal.pcbi.1010254] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
8 Hutchinson LG, Grimm O. Integrating digital pathology and mathematical modelling to predict spatial biomarker dynamics in cancer immunotherapy. NPJ Digit Med 2022;5:92. [PMID: 35821064 DOI: 10.1038/s41746-022-00636-3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Bergman D, Sweis RF, Pearson AT, Nazari F, Jackson TL. A global method for fast simulations of molecular dynamics in multiscale agent-based models of biological tissues. iScience 2022;25:104387. [PMID: 35637730 DOI: 10.1016/j.isci.2022.104387] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 West J, Rentzeperis F, Adam C, Bravo R, Luddy KA, Robertson-tessi M, Anderson ARA. Tumor-immune metaphenotypes orchestrate an evolutionary bottleneck that promotes metabolic transformation.. [DOI: 10.1101/2022.06.03.493752] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Engeland CE, Heidbuechel JP, Araujo RP, Jenner AL. Improving immunovirotherapies: the intersection of mathematical modelling and experiments. ImmunoInformatics 2022;6:100011. [DOI: 10.1016/j.immuno.2022.100011] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Rojas-Domínguez A, Arroyo-Duarte R, Rincón-Vieyra F, Alvarado-Mentado M. Modeling cancer immunoediting in tumor microenvironment with system characterization through the ising-model Hamiltonian. BMC Bioinformatics 2022;23:200. [PMID: 35637445 DOI: 10.1186/s12859-022-04731-w] [Reference Citation Analysis]
13 Mi H, Ho WJ, Yarchoan M, Popel AS. Multi-Scale Spatial Analysis of the Tumor Microenvironment Reveals Features of Cabozantinib and Nivolumab Efficacy in Hepatocellular Carcinoma. Front Immunol 2022;13:892250. [DOI: 10.3389/fimmu.2022.892250] [Reference Citation Analysis]
14 de Melo Quintela B, Hervas-raluy S, Manuel Garcia Aznar J, Walker D, Wertheim KY, Viceconti M. A Theoretical Analysis of the Scale Separation in a Model to Predict Solid Tumour Growth. Journal of Theoretical Biology 2022. [DOI: 10.1016/j.jtbi.2022.111173] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Materials Today Bio 2022. [DOI: 10.1016/j.mtbio.2022.100269] [Reference Citation Analysis]
16 Demetriades M, Zivanovic M, Hadjicharalambous M, Ioannou E, Ljujic B, Vucicevic K, Ivosevic Z, Dagovic A, Milivojevic N, Kokkinos O, Bauer R, Vavourakis V. Interrogating and Quantifying In Vitro Cancer Drug Pharmacodynamics via Agent-Based and Bayesian Monte Carlo Modelling. Pharmaceutics 2022;14:749. [DOI: 10.3390/pharmaceutics14040749] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Patsatzis DG. Algorithmic asymptotic analysis: Extending the arsenal of cancer immunology modeling. J Theor Biol 2022;534:110975. [PMID: 34883121 DOI: 10.1016/j.jtbi.2021.110975] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
18 Maestri S, Merelli E, Pettini M. Agent-based models for detecting the driving forces of biomolecular interactions. Sci Rep 2022;12:1878. [PMID: 35115584 DOI: 10.1038/s41598-021-04205-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Chen S, Zhang H, Hou Q, Zhang Y, Qiao A. Multiscale Modeling of Vascular Remodeling Induced by Wall Shear Stress. Front Physiol 2022;12:808999. [DOI: 10.3389/fphys.2021.808999] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
20 Verstraete N, Marku M, Domagala M, Arduin H, Bordenave J, Fournié J, Ysebaert L, Poupot M, Pancaldi V. An Agent-Based Model of Monocyte Differentiation into Tumour-Associated Macrophages in Chronic Lymphocytic Leukemia.. [DOI: 10.1101/2021.12.17.473137] [Reference Citation Analysis]
21 Gondal MN, Chaudhary SU. Navigating Multi-Scale Cancer Systems Biology Towards Model-Driven Clinical Oncology and Its Applications in Personalized Therapeutics. Front Oncol 2021;11:712505. [PMID: 34900668 DOI: 10.3389/fonc.2021.712505] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Montagud A, Ponce-de-leon M, Valencia A. Systems biology at the giga-scale: Large multiscale models of complex, heterogeneous multicellular systems. Current Opinion in Systems Biology 2021;28:100385. [DOI: 10.1016/j.coisb.2021.100385] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
23 Lima EABF, Faghihi D, Philley R, Yang J, Virostko J, Phillips CM, Yankeelov TE. Bayesian calibration of a stochastic, multiscale agent-based model for predicting in vitro tumor growth. PLoS Comput Biol 2021;17:e1008845. [PMID: 34843457 DOI: 10.1371/journal.pcbi.1008845] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
24 Corti A, Colombo M, Migliavacca F, Rodriguez Matas JF, Casarin S, Chiastra C. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models. Front Bioeng Biotechnol 2021;9:744560. [PMID: 34796166 DOI: 10.3389/fbioe.2021.744560] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Zhang S, Gong C, Ruiz-Martinez A, Wang H, Davis-Marcisak E, Deshpande A, Popel AS, Fertig EJ. Integrating single cell sequencing with a spatial quantitative systems pharmacology model spQSP for personalized prediction of triple-negative breast cancer immunotherapy response. Immunoinformatics (Amst) 2021;1-2:100002. [PMID: 34708216 DOI: 10.1016/j.immuno.2021.100002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
26 Aguilar B, Gibbs DL, Reiss DJ, McConnell M, Danziger SA, Dervan A, Trotter M, Bassett D, Hershberg R, Ratushny AV, Shmulevich I. A generalizable data-driven multicellular model of pancreatic ductal adenocarcinoma. Gigascience 2020;9:giaa075. [PMID: 32696951 DOI: 10.1093/gigascience/giaa075] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
27 Ma H, Wang H, Sové RJ, Wang J, Giragossian C, Popel AS. Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J Immunother Cancer 2020;8:e001141. [PMID: 32859743 DOI: 10.1136/jitc-2020-001141] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 9.0] [Reference Citation Analysis]
28 Ford Versypt AN. Multiscale modeling in disease. Current Opinion in Systems Biology 2021;27:100340. [DOI: 10.1016/j.coisb.2021.05.001] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
29 Butner JD, Wang Z. Predicting immune checkpoint inhibitor response with mathematical modeling. Immunotherapy 2021;13:1151-5. [PMID: 34435504 DOI: 10.2217/imt-2021-0209] [Reference Citation Analysis]
30 Wertheim KY, Puniy BL, La Fleur A, Shah AR, Barberis M, Helikar T. A multi-approach and multi-scale platform to model CD4+ T cells responding to infections. PLoS Comput Biol 2021;17:e1009209. [PMID: 34343169 DOI: 10.1371/journal.pcbi.1009209] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
31 Gong C, Ruiz-Martinez A, Kimko H, Popel AS. A Spatial Quantitative Systems Pharmacology Platform spQSP-IO for Simulations of Tumor-Immune Interactions and Effects of Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021;13:3751. [PMID: 34359653 DOI: 10.3390/cancers13153751] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
32 Beckman RA, Kareva I, Adler FR. How Should Cancer Models Be Constructed? Cancer Control 2020;27:1073274820962008. [PMID: 32991214 DOI: 10.1177/1073274820962008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
33 Abdollahiyan P, Oroojalian F, Baradaran B, de la Guardia M, Mokhtarzadeh A. Advanced mechanotherapy: Biotensegrity  for governing metastatic tumor cell fate via modulating the extracellular matrix. J Control Release 2021;335:596-618. [PMID: 34097925 DOI: 10.1016/j.jconrel.2021.06.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
34 Belenchia M, Rocchetti G, Maestri S, Cimadamore A, Montironi R, Santoni M, Merelli E. Agent-Based Learning Model for the Obesity Paradox in RCC. Front Bioeng Biotechnol 2021;9:642760. [PMID: 33996779 DOI: 10.3389/fbioe.2021.642760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
35 Frisch HP, Sprau A, McElroy VF, Turner JD, Becher LRE, Nevala WK, Leontovich AA, Markovic SN. Cancer immune control dynamics: a clinical data driven model of systemic immunity in patients with metastatic melanoma. BMC Bioinformatics 2021;22:197. [PMID: 33863290 DOI: 10.1186/s12859-021-04025-7] [Reference Citation Analysis]
36 Koomullil R, Tehrani B, Goliwas K, Wang Y, Ponnazhagan S, Berry J, Deshane J. Computational Simulation of Exosome Transport in Tumor Microenvironment. Front Med (Lausanne) 2021;8:643793. [PMID: 33928104 DOI: 10.3389/fmed.2021.643793] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
37 Chirmule N, Nair P, Desai B, Khare R, Nerurkar V, Gaur A. Predicting the severity of disease progression in COVID-19 at the individual and population level: A mathematical model. medRxiv 2021:2021. [PMID: 33851191 DOI: 10.1101/2021.04.01.21254804] [Reference Citation Analysis]
38 Tang Y, Cao Y. Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021;13:422. [PMID: 33800976 DOI: 10.3390/pharmaceutics13030422] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
39 Valentim CA, Rabi JA, David SA. Fractional Mathematical Oncology: On the potential of non-integer order calculus applied to interdisciplinary models. Biosystems 2021;204:104377. [PMID: 33610556 DOI: 10.1016/j.biosystems.2021.104377] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
40 Zhao C, Medeiros TX, Sové RJ, Annex BH, Popel AS. A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience 2021;24:102112. [PMID: 33659877 DOI: 10.1016/j.isci.2021.102112] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 7.0] [Reference Citation Analysis]
41 Koshy-Chenthittayil S, Archambault L, Senthilkumar D, Laubenbacher R, Mendes P, Dongari-Bagtzoglou A. Agent Based Models of Polymicrobial Biofilms and the Microbiome-A Review. Microorganisms 2021;9:417. [PMID: 33671308 DOI: 10.3390/microorganisms9020417] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
42 León-Triana O, Pérez-Martínez A, Ramírez-Orellana M, Pérez-García VM. Dual-Target CAR-Ts with On- and Off-Tumour Activity May Override Immune Suppression in Solid Cancers: A Mathematical Proof of Concept. Cancers (Basel) 2021;13:703. [PMID: 33572301 DOI: 10.3390/cancers13040703] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
43 Yu JS, Bagheri N. Agent-Based Modeling. Systems Medicine 2021. [DOI: 10.1016/b978-0-12-801238-3.11509-0] [Reference Citation Analysis]
44 Chirmule N, Khare R, Nair P, Desai B, Nerurkar V, Gaur A. Predicting the Severity of Disease Progression in COVID-19 at the Individual and Population Level: A Mathematical Model. Clin Exp Pharmacol 2021;11:283. [PMID: 34367726] [Reference Citation Analysis]
45 Feng P, Li Z, Li Y, Zhang Y. Phosphatase and Tensin Homolog Mutation in Immune Cell Infiltration and Clinicopathological Features of Low-Grade Gliomas. Front Mol Biosci 2020;7:562416. [PMID: 33363203 DOI: 10.3389/fmolb.2020.562416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Aghakhani S, Zerrouk N, Niarakis A. Metabolic Reprogramming of Fibroblasts as Therapeutic Target in Rheumatoid Arthritis and Cancer: Deciphering Key Mechanisms Using Computational Systems Biology Approaches. Cancers (Basel) 2020;13:E35. [PMID: 33374292 DOI: 10.3390/cancers13010035] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
47 Gupta R, Le H, Van Arnam J, Belinsky D, Hasan M, Samaras D, Kurc T, Saltz JH. Characterizing Immune Responses in Whole Slide Images of Cancer With Digital Pathology and Pathomics. Curr Pathobiol Rep 2020;8:133-48. [DOI: 10.1007/s40139-020-00217-7] [Cited by in Crossref: 3] [Article Influence: 1.0] [Reference Citation Analysis]
48 Valentinuzzi D, Jeraj R. Computational modelling of modern cancer immunotherapy. Phys Med Biol 2020;65:24TR01. [PMID: 33091898 DOI: 10.1088/1361-6560/abc3fc] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
49 Mi H, Gong C, Sulam J, Fertig EJ, Szalay AS, Jaffee EM, Stearns V, Emens LA, Cimino-Mathews AM, Popel AS. Digital Pathology Analysis Quantifies Spatial Heterogeneity of CD3, CD4, CD8, CD20, and FoxP3 Immune Markers in Triple-Negative Breast Cancer. Front Physiol 2020;11:583333. [PMID: 33192595 DOI: 10.3389/fphys.2020.583333] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 6.3] [Reference Citation Analysis]
50 Bekisz S, Geris L. Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications. Journal of Computational Science 2020;46:101198. [DOI: 10.1016/j.jocs.2020.101198] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 5.3] [Reference Citation Analysis]
51 Fassler DJ, Abousamra S, Gupta R, Chen C, Zhao M, Paredes D, Batool SA, Knudsen BS, Escobar-Hoyos L, Shroyer KR, Samaras D, Kurc T, Saltz J. Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagn Pathol. 2020;15:100. [PMID: 32723384 DOI: 10.1186/s13000-020-01003-0] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 6.7] [Reference Citation Analysis]
52 Reticker-Flynn NE, Engleman EG. Cancer systems immunology. Elife 2020;9:e53839. [PMID: 32657757 DOI: 10.7554/eLife.53839] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
53 Szeto GL, Finley SD. Integrative Approaches to Cancer Immunotherapy. Trends Cancer 2019;5:400-10. [PMID: 31311655 DOI: 10.1016/j.trecan.2019.05.010] [Cited by in Crossref: 24] [Cited by in F6Publishing: 29] [Article Influence: 8.0] [Reference Citation Analysis]
54 Lapuente-Santana Ó, Eduati F. Toward Systems Biomarkers of Response to Immune Checkpoint Blockers. Front Oncol 2020;10:1027. [PMID: 32670886 DOI: 10.3389/fonc.2020.01027] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
55 Ma H, Wang H, Sove RJ, Jafarnejad M, Tsai CH, Wang J, Giragossian C, Popel AS. A Quantitative Systems Pharmacology Model of T Cell Engager Applied to Solid Tumor. AAPS J 2020;22:85. [PMID: 32533270 DOI: 10.1208/s12248-020-00450-3] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
56 Heidary Z, Ghaisari J, Moein S, Haghjooy Javanmard S. The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach. PLoS One 2020;15:e0232965. [PMID: 32384110 DOI: 10.1371/journal.pone.0232965] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
57 Stalidzans E, Zanin M, Tieri P, Castiglione F, Polster A, Scheiner S, Pahle J, Stres B, List M, Baumbach J, Lautizi M, Van Steen K, Schmidt HH. Mechanistic Modeling and Multiscale Applications for Precision Medicine: Theory and Practice. Network and Systems Medicine 2020;3:36-56. [DOI: 10.1089/nsm.2020.0002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
58 Manzo G. Agent-based models and methodological individualism: are they fundamentally linked? L'Année sociologique 2020;Vol. 70:197-229. [DOI: 10.3917/anso.201.0197] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
59 Bravo RR, Baratchart E, West J, Schenck RO, Miller AK, Gallaher J, Gatenbee CD, Basanta D, Robertson-Tessi M, Anderson ARA. Hybrid Automata Library: A flexible platform for hybrid modeling with real-time visualization. PLoS Comput Biol 2020;16:e1007635. [PMID: 32155140 DOI: 10.1371/journal.pcbi.1007635] [Cited by in Crossref: 38] [Cited by in F6Publishing: 41] [Article Influence: 12.7] [Reference Citation Analysis]
60 Makaryan SZ, Cess CG, Finley SD. Modeling immune cell behavior across scales in cancer. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1484. [PMID: 32129950 DOI: 10.1002/wsbm.1484] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
61 Popel AS. Immunoactivating the tumor microenvironment enhances immunotherapy as predicted by integrative computational model. Proc Natl Acad Sci U S A 2020;117:4447-9. [PMID: 32102915 DOI: 10.1073/pnas.2001050117] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 5.0] [Reference Citation Analysis]
62 Przekwas A, Somayaji MR. Computational pharmacokinetic modeling of organ-on-chip devices and microphysiological systems. Organ-on-a-chip 2020. [DOI: 10.1016/b978-0-12-817202-5.00011-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
63 Wu Q, Finley SD. Modeling cell signaling in heterogeneous cancer environments. Current Opinion in Systems Biology 2019;17:15-23. [DOI: 10.1016/j.coisb.2019.09.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
64 Meyer AS, Heiser LM. Systems biology approaches to measure and model phenotypic heterogeneity in cancer. Curr Opin Syst Biol 2019;17:35-40. [PMID: 32864511 DOI: 10.1016/j.coisb.2019.09.002] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
65 Khazen R, Müller S, Lafouresse F, Valitutti S, Cussat-Blanc S. Sequential adjustment of cytotoxic T lymphocyte densities improves efficacy in controlling tumor growth. Sci Rep 2019;9:12308. [PMID: 31444380 DOI: 10.1038/s41598-019-48711-2] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
66 Benkhedda S, Bendella F. FASim: A 3D Serious Game for the First Aid Emergency. Simulation & Gaming 2019;50:690-710. [DOI: 10.1177/1046878119865913] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
67 Jafarnejad M, Sové RJ, Danilova L, Mirando AC, Zhang Y, Yarchoan M, Tran PT, Pandey NB, Fertig EJ, Popel AS. Mechanistically detailed systems biology modeling of the HGF/Met pathway in hepatocellular carcinoma. NPJ Syst Biol Appl 2019;5:29. [PMID: 31452933 DOI: 10.1038/s41540-019-0107-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
68 Preen RJ, Bull L, Adamatzky A. Towards an evolvable cancer treatment simulator. Biosystems 2019;182:1-7. [DOI: 10.1016/j.biosystems.2019.05.005] [Cited by in Crossref: 14] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
69 Chamseddine IM, Rejniak KA. Hybrid modeling frameworks of tumor development and treatment. Wiley Interdiscip Rev Syst Biol Med 2020;12:e1461. [PMID: 31313504 DOI: 10.1002/wsbm.1461] [Cited by in Crossref: 23] [Cited by in F6Publishing: 29] [Article Influence: 5.8] [Reference Citation Analysis]
70 Jafarnejad M, Gong C, Gabrielson E, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Popel AS. A Computational Model of Neoadjuvant PD-1 Inhibition in Non-Small Cell Lung Cancer. AAPS J 2019;21:79. [PMID: 31236847 DOI: 10.1208/s12248-019-0350-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 7.5] [Reference Citation Analysis]
71 Ozik J, Collier N, Heiland R, An G, Macklin P. Learning-accelerated discovery of immune-tumour interactions. Mol Syst Des Eng 2019;4:747-60. [PMID: 31497314 DOI: 10.1039/c9me00036d] [Cited by in Crossref: 32] [Cited by in F6Publishing: 33] [Article Influence: 8.0] [Reference Citation Analysis]
72 Wang H, Milberg O, Bartelink IH, Vicini P, Wang B, Narwal R, Roskos L, Santa-Maria CA, Popel AS. In silico simulation of a clinical trial with anti-CTLA-4 and anti-PD-L1 immunotherapies in metastatic breast cancer using a systems pharmacology model. R Soc Open Sci 2019;6:190366. [PMID: 31218069 DOI: 10.1098/rsos.190366] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
73 Carlson RP, Sauro HM. Special Issue: Methods in Computational Biology. Processes 2019;7:205. [DOI: 10.3390/pr7040205] [Reference Citation Analysis]
74 Ozik J, Collier N, Heiland R, An G, Macklin P. Learning-accelerated Discovery of Immune-Tumour Interactions.. [DOI: 10.1101/573972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
75 Mahlbacher GE, Reihmer KC, Frieboes HB. Mathematical modeling of tumor-immune cell interactions. J Theor Biol 2019;469:47-60. [PMID: 30836073 DOI: 10.1016/j.jtbi.2019.03.002] [Cited by in Crossref: 58] [Cited by in F6Publishing: 59] [Article Influence: 14.5] [Reference Citation Analysis]
76 Parv L, Deaky B, Nasulea M, Oancea G. Agent-Based Simulation of Value Flow in an Industrial Production Process. Processes 2019;7:82. [DOI: 10.3390/pr7020082] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]